
Security Evaluation of App Runtime for Chrome

Meng Xu

Georgia Institute of Technology

meng.xu@gatech.edu

December 1, 2014

Meng Xu (Gatech) Demo December 1, 2014 1 / 15



Overview

1 ARC Introduction

2 Permission Shift

3 Inter-”Component” Communication

Meng Xu (Gatech) Demo December 1, 2014 2 / 15



ARC Introduction

The goal of ARC is to build the
minimum codebase to run a
single Android app

Implicitly constrained by
multiple sandboxes

Privileges operations handled by
Chrome broker process (by the
design of NaCl)

Complemented by a
re-packaging script

OS

Chrome Broker Process

Chrome App (Renderer) Sandbox

NaCl Sandbox

ARC (Android Emulator)

Meng Xu (Gatech) Demo December 1, 2014 3 / 15



Permission Shift

Permission model is the core of Android security

Problem: Repackaged app has access to privileged operations even
without declaring corresponding permissions.

Approach: Instrument the repackaging script to declare correct
Chrome permissions given declared Android permissions.

Demo

Meng Xu (Gatech) Demo December 1, 2014 4 / 15



Permission Shift

Difficulties

Extract declarable permission list
→ Write an app to probe PackageManager on ARC dynamically
Map Android permissions to Chrome permissions
→ Manual process

Meng Xu (Gatech) Demo December 1, 2014 5 / 15



Permission Shift

Cause of the problem: two ways of enforcing permissions in Android

Assign GID to the app
→ Broken
Intercept API/system call to check permission
→ Still works

Demo

Meng Xu (Gatech) Demo December 1, 2014 6 / 15



Permission Shift

Future work

Enhance the completeness of the permission shift
→ Currently support ”dangerous” permissions only
→ Declarable permissions in Android and Chrome are not perfect
matches
Bring back the GID enforcement

Meng Xu (Gatech) Demo December 1, 2014 7 / 15



Inter-”Component” Communication

Possible communications

App ←→ App
App ←→ Extension
App ←→ Webpage
App ←→ System

General conclusion: since ARC is heavily sandboxed, there is no
particular advantage gained by attacking the ARC model compared
with attacking Chrome or writing an Android malware.

Meng Xu (Gatech) Demo December 1, 2014 8 / 15



Inter-”Component” Communication

App ←→ App

App ←→ Extension

App ←→ Webpage

App ←→ System

OS

Chrome Broker Process

Chrome App (Renderer) Sandbox

NaCl Sandbox

ARC (Android Emulator)

Meng Xu (Gatech) Demo December 1, 2014 9 / 15



Inter-”Component” Communication

App ←→ App

System privilege escalation attack does not make sense
Component hijacking (of another app) is not possible

Meng Xu (Gatech) Demo December 1, 2014 10 / 15



Inter-”Component” Communication

App ←→ Extension

Chrome extension may cause a DoS on Android app (Demo)
Chrome extension may view the cookies generated from Android
WebView (Demo)
Android app has no way of influencing Chrome extensions

Meng Xu (Gatech) Demo December 1, 2014 11 / 15



Inter-”Component” Communication

App ←→ Webpage

No interaction

Meng Xu (Gatech) Demo December 1, 2014 12 / 15



Inter-”Component” Communication

App ←→ System

Data stored in both ”internal storage” or ”external storage” are not
safe (Demo)
Apps may have access to OS filesystem (via browser file chooser), but
will not be able to modify them (Demo)

Meng Xu (Gatech) Demo December 1, 2014 13 / 15



Inter-”Component” Communication

Future work

Going systematical
→ Apply dynamic taint analysis or static model checking to test the
interaction between ARC and extension/webpage/system
Side-channels / covert-channels

Meng Xu (Gatech) Demo December 1, 2014 14 / 15



Questions ?
Source code available at https://github.com/meng-xu/arc-security.

Meng Xu (Gatech) Demo December 1, 2014 15 / 15

https://github.com/meng-xu/arc-security

	ARC Introduction
	Permission Shift
	Inter-"Component" Communication

