
Intel SGX
Emulation using
QEMU

Prerit Jain

Soham Desai

Overview

•Problem Statement
•Proposed Solution & Design

•Difficulties Faced

•What’s Next ? Future Work

Problem Statement: (A short
Recap)

•SGX provides a set of new CPU instructions that can be used by
applications to set aside private regions of code and data.

•We aimed to create an emulation platform for SGX using ‘QEMU’
the open source machine emulator.

Proposed Solution and
Design

•Developed QEMU translation core for interpreting and
translating new SGX instructions.

•Take advantage of the ‘user emulation’ feature of QEMU.
Created a User space Library providing support for both User and
Kernel Space SGX functionalities.

•Provide Access Control, Data Structures within QEMU

•Cryptographic functionality using Polar SSL Crypto Library

Overview of Modifications

Application
Binary

Target Specific
Translation

TCG Micro
Ops

Host Object
Code

Tiny Code Generator

CPU Execution Loop

Applicatio
n Binary

Enclave
Code

dlopen

SGX Library

Target Specific
Translation

TCG Micro
Ops

Host Object
Code

CPU Execution Loop

Translation Logic for
SGX Instructions

QEMU QEMU

 Decoding Logic to Interpret New

Instructions

Providing Access Control

•Dedicate Virtual Space for the Enclave Page Cache.
(During Initialization of QEMU)
•Check all Load/ Stores within QEMU translation.
(During Translation phase)
•Prevent Access if address falls within the dedicated region if not in
Enclave mode.

Static Library Snippets

Difficulties Faced

•Understanding QEMU semantics.
Its Internal Representation of x86 architecture, control flow,
translation of guest to host operations.

•Collaboration with multiple contributors. (ensuring segregation
of work and interoperability of modules created by different
individuals)

Approaching Completion

•Exception Handling Mechanism:

•Currently working with a basic exception such as a Floating Point
Exception(FPE) but need to take into account different
asynchronous exits.

Some Statistics

•Total Lines of Code Added: 5000 +

•Total GIT Commits : 350 +

•Number of Contributors: 5
 Professors: Dr. Taesoo Kim, Dr. Dongsu Han (KAIST)
 Students: Seongmin(KAIST), Prerit Jain, Soham Desai

•What we Learned :
Emulation using QEMU, Development of Console Application,
shared and static libraries, kernel module, x86 Architecture, Unit
Testing, Device Driver, GUI development using QT.

Future Work Possibilities

•Showcasing SGX functionalities for different applications and
creating prototypes.

•Providing SGX Support for Applications built for different
platforms like ARM, SPARC, etc. by using QEMU translation

•Extending Emulation support for remaining SGX instructions

 Demo

Time for Q & A !!

Questions for us?

Back Up

Overview of Enclave Creation
1.Application hands over Enclave content to OS enclave creation service. (ENCLS
Leaf Instructions)

•Initial Setup, Reserving Memory, Basis Data Structures -> ECREATE
Instruction
•Committing pages from protected storage for code and data -> EADD
Instruction

•Finalize Measurement and complete creation process -> EINIT Instructions

1.Once the Enclave is created, the application can execute ENCLU leaf
instructions.

•Entering into the enclave, performing a context switch to the Enclave
execution context -> EENTER

•Restoring the context and exiting the enclave -> EEXIT

Thus for showcasing a Simple Application we need to emulate the following
instructions ECREATE, EADD, EINIT, EENTER, EEXIT -> Our Primary target.

SGX and QEMU Architecture

QEMU

X86 Emulation

SGX Kernel Module

Application
User Space

Linux Kernel

SGX Architectural
Implementation

ENCLU

ENCLS

Intel SGX

2 New Instructions

-ENCLU (For User Space)
-ENCLS (For Kernel)
Each has multiple leaf
Instructions which together
provide the complete SGX
functionality

QEMU

Interpreting the new Opcode

And Leaf functions and providing

The functionality expected from

Hardware.

