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Problem Statement:  ( A short 
Recap) 
 

 

•SGX  provides a set of new CPU instructions that can be used by 
applications to set aside private regions of code and data. 
 

•We aimed to create an emulation platform for SGX using ‘QEMU’ 
the open source machine emulator. 
 



Proposed Solution and 
Design  
 

•Developed QEMU translation core for interpreting and 
translating new SGX instructions. 
 

•Take advantage of the ‘user emulation’ feature of QEMU. 
Created a User space Library providing support for both User and 
Kernel Space SGX functionalities. 
  
•Provide Access Control, Data Structures within QEMU 
 
•Cryptographic functionality using Polar SSL Crypto Library 
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Providing Access Control 

 

•Dedicate Virtual Space for the Enclave Page Cache. 
(During Initialization of QEMU) 
•Check all Load/ Stores within QEMU translation.  
(During Translation phase) 
•Prevent Access if address falls within the dedicated region if not in 
Enclave mode. 
 





Static Library Snippets 



Difficulties Faced 

•Understanding QEMU semantics.  
Its Internal Representation of x86 architecture, control flow,     
translation of guest to host operations.  
 

•Collaboration with multiple contributors. (ensuring segregation 
of work and interoperability of modules created by different 
individuals) 



Approaching Completion 

 

•Exception Handling Mechanism: 
 

•Currently working with a basic exception such as a Floating Point 
Exception(FPE) but need to take into account different 
asynchronous exits. 
 

 



Some Statistics  

•Total Lines of Code Added: 5000 + 
 

•Total GIT Commits : 350 + 
  
•Number of Contributors:  5 
     Professors: Dr. Taesoo Kim, Dr. Dongsu Han (KAIST) 
     Students: Seongmin(KAIST), Prerit Jain, Soham Desai 
  
 

•What we Learned :  
Emulation using QEMU, Development of Console Application, 
shared and static libraries, kernel module, x86 Architecture, Unit 
Testing, Device Driver, GUI development using QT. 



Future Work Possibilities 

•Showcasing SGX functionalities for different applications and 
creating prototypes. 
 

•Providing SGX Support for Applications built for different 
platforms like ARM, SPARC, etc. by using QEMU translation 
 

•Extending Emulation support for remaining SGX instructions 
 



               Demo 



Time for Q & A !! 
 

Questions for us? 



Back Up 



Overview of Enclave Creation 
1.Application hands over Enclave content to OS enclave creation service. (ENCLS 
Leaf Instructions) 

•Initial Setup, Reserving Memory, Basis Data Structures  ->  ECREATE 
Instruction  
•Committing pages from protected storage for code and data -> EADD 
Instruction 

•Finalize Measurement and complete creation process -> EINIT Instructions 
 
1.Once the Enclave is created, the application can execute ENCLU leaf 
instructions. 

•Entering into the enclave, performing a context switch to the Enclave 
execution context -> EENTER 

•Restoring the context and exiting the enclave -> EEXIT 

 
Thus for showcasing a Simple Application we need to emulate the following 
instructions ECREATE, EADD, EINIT, EENTER, EEXIT   -> Our Primary target. 
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