Distributed Social Network
In Browsers

Yang Ji
Michael Puckett

Problem

e Large scale personal data abuse and manipulation
raises question to the cloud based architecture in
social networks.

— Sensitive personal information is sold for profit and for fun.

— Evidence shows even encrypted data at the cloud can be
mined or has hidden backdoors.

Motivation

e Users desire to control their data instead of
trusting the service provider.

— Even existing sub-distributed social network like
Diaspora™ has regional centralized servers.

— We deliver a pure distributed peer-to-peer
architecture

* WebRTC enables peer-to-peer communication in
browsers.

— Great opportunity to bring DSN to browsers

Threat model

* Centralized server (AVL server) :
— has access to all the users’ public key, user name, peer id.
— has NO access to any user’s private key.
* A peer:

— has access to any other’s public key, username/peerid,
anyone’s encrypted post.

— has NO access to any other’s private key.

* Any sniffer:
— has access to intercepted posts.

Design Overview

Availability
Server

Features

Confidentiality

— All the posts are encrypted, only the designated receivers can decrypt.

Privacy
— The AVL server is isolated from the communication among peers.
Availability

— The missed posts during offline period are synced and restored with
acceptable latency.

Anonymity

— Intercepted posts reveal no origin or destination username.

Architectu

e Peerside

re

X ChANZE: POSTS —

Peer side
(™
User —eml]ser input Node-forge
(crypto)
e
ets® 7]
P
WebSocket .r 1
Client WebRTC
IndexedDB Y 4)
User

credentials

Y

WebSocket
Server

Availability for Server side
WebRTC Peerjs-server
Other

peers

Architecture

e AVL Server side

Peer side

WebSocket —mm—

client

Peer side
HTTP client

.

User credential
request/response

HTTP
request/response

Server side

WebSocket User credentials:

username,peerid,pubkey

Nodejs

MongoDB

Availability for _ Peer side

PeeTjs-server WebRTC peerjs

Crypto Design — user credential

* New user registration
A new user inputs the {uname, pwd}.

A pair of RSA keys (pubkey,privkey) is generated.
{uname, pubkey} is transmitted to the server.
Server stores the {uname,pubkey} and assigns a peerid.

pwd is hashed to become a key K

privkey

to encrypt the privkey; E(privkey) =

Enc KloriVkey(privkey) is stored at the client side.

peer

1. New user inputs
the {uname, pwd}

2. Generate RSA keys
(pubkey,privkey).

3.{uname, pubkey} is

{uname, pubkey}

server

sent to the server.

S. H(de) = Kprivkey

6. Store:
{uname: E(privkey)}

4. Server stores {uname,pubkey} and
assigns a peerid for this new user.

* Userlogin
— User inputs the {uname, pwd}.
— Compute K.y ,» and decrypt privkey: privkey = Dec KIDriVkey(E(privkey))
— User sends login request to server: {uname}.
— Server responses with a challenge E(C) of a random num encrypted with

user’s pubkey: E(C) = ENCy;pey(C).

— User decrypts and sends back the C with K ;.: C = Dec priviey(E(C)).
— Server validates the C’ with C and directs the page to /home if good.

peer server

1. User inputs the {uname, pwd}

2. Compute K ey =H(pwd),
privkey = Dec KpriVkey(E(privkey))

3.uname is sent to the server. {uname}
4, Server computes
> {E(C)} and sends E(C) = ENC, ey (C).
5. Compute: C* = Dec yrivkey(E(C)) {ch
6. Validate C and C".
Direct to /home 7.1 Login success

7.2 Login fail

Crypto Design - 2

Encrypt post individually for AES encrypt post message with

h inient ing thei random key and IV. Use receiver’s
€ac . recipient, using their RSA public key to encrypt the
public key generated key and IV.

imePosted = Date.now(): var cipher = forge.cipher.createCipher('AES-CBC', key):
connectionCache. keys. forEach(function (peerId) { cipher.start({iv: iv}}:
cipher.update({forge.util.createBuffer{post.text)):
var conn = connectionCache.conns[peerId]; CiFIhE'F .finishi):
erld(conn. peer, f 1(friend) {

var encryptedlext = cipher.output.getBytes():

var pubkey = forge.pki.publicKeyFromPem(receiverPubKey);
re

e : st encryptedieskey = pubkey.encrypt(key);
. end.] : -, -
o e encryptedidesIv = pubKey.encrypt{iv):

it I

I
L
id: post.id,

encryptedlex
mp: post.ti
: post.re
ncryptedh
encryptedies

Crypto Design - 3

Store encrypted post in Use current user’s RSA private
indexedDB, store decrypted post key to decrypt the AES key and
in post “cache” (for DOM IV, then use the decrypted key
rendering) and IV to decrypt post message.

T
L

conn.on({ ‘'data’', function (data) {
ipher.createDecipher('AES-CBC', aeskey);
var post 1
author: conn.peer,
postId: data.id,

var decryptedlext = decipher.output.toString():

1
author: post.author,

Friendship management

peerA client Server peerB client

*
w indexedDB dexedDB Availability peerls
m pendingRequest Store Friend Store Server Server
i
i
i
|

Sajax.GET(peerB.username)

i

i

i

i

i

i

i

| peerB: {

| username: 'username’,
v peerid: 'peerid',
i pubKey: ‘pubKey'
i }

i

T

i

i

i

i

i

T

i

peer.connect(peerB.peerid)
emit(’connection’, userA.peerid)»]

emit('open’, dataConnection)

cache.add(dataConnection)

i
i
i
i
i
i
T
i
i
i
i
i
i
i
]
i
i
i
i
i
i
i
T
i
i
i
i
i
T
i
i
|
|
|
|
|
|
|
|
i
i
77 i
|
i
dataConnection.on('data’, function(data){
// "listen" for data from connection
I

bE |

—— dataConnection.send("FRND_RSP")- - === === === == - - - o oo oo o oo

userB
peer

alt

[data.text ==="Accept']

|
|
|
|
S
|
I
T
|
|
|
|
|
|
|
|
|
|
|
|

cache.remove(dataConnection)—»|

| T
| i

| i

| i

i i

i i

| i

i i
dataConnection.close() T
i

i

‘

T

i

i

i

i

i

i

i

Synchronization

* Why do we need it

— Users stay online sparsely. But she still gets to receive
the missed posts during offline period.

— Without a centralized server, synchronization
becomes challenging.

— Leverage other peers to sync the posts.

* Design goal

— Minimize the latency between an initial posting and
the arriving at a receiver.

Flooding Sync - 1

 Basicidea:

— Try best to propagate posts among peers (even
not friends); the user can get their supposed
posts, or help propagate the sync posts.

* Confidentiality

— It is kept as only the receiver can decrypt the post
with her private key.

User tnitiaies
@ posf

Cio to friend 7+

Flowchart

{io to triend i+

h

Edpast) =
].':1'.IL'-|1.|-.||.-_u.|u1.l'?f.-'-'Fl'}

Yes

}

Send {1 Efjpasr), 2,

Edposi)} to L
J-edherafflime friends

Push B pesr) to
VN SIOTE

User pets online

M

Yies

Conmest to §

Gio to i+ l

Kequest missed posts during
[last connecting fime, now)

Push Elpost) 1o
YN, store

Cio to 41

Push E{posi} 1o
[rost store

Also for when the user receives a post,

Post-specific sync (W.I.P.) - 1

Each post has a list of all intended

recipients, so that every peer
who receives can participate in
the distributed syncing.

Advantages:
— High availability of posts
(assuming many friend
connections in common)

— Storage efficiency because a
user only stores posts
intended for them.

Disadvantages:

— A lot of sync communication
happening asynchronously
which may lead to
collisions/duplicates.

Proposed post representation:

post: {

postId: ‘uniquePostId’,

author: ‘senderPeerId’,

text: {
text: ‘encryptedMessage’,
timestamp: 1234567890

}I

receivers: {
‘receiverAPeerId’ : false,
‘receiverBPeerId’' : false,
‘receiverCPeerId’ : true

Post-specific sync (W.I.P.) - 2

Receive connection:

read postX.postld

Receive incoming postX.timestamp >= peerA.lastTimeConnected)) w
connection from g &8 postX.receivers.contains(peerA) ,‘ ftrue] Ask peerA if he has

& & postX.receivers|peerd] == false

peerA

'f_.:*—[peem never respondsli‘ send postX to peerd et AT R no]i‘

[peerd notifies postX rece ived] [peerd responds yes]

v

p
':.:1 postX.receivers[peerA] = true
postX.receiverspeerA] =true

Post-specific sync (W.I.P.) - 3

Login and initiate connection:

: Receive inquir
Create connection uiry
. from peerB about
with peerB
postX.postld

[allPosts. containg postX.post Id]]—l

Notify peerB we
have received postX

[not allPosts. containg postX postid]]

Receive postX from | Respond to peerB
peer -

not read postX

(Must check again because this
process is asynchronous between
many connections/peers)

[mot allPosts. containd postX. postId)]——

allPosts.add(postX) [allPosts contains{postX_post id)]

forEach(postX.receivers) {
acknowledgeReceipt(peerA, postX)

Notify peerB that

postX was received .
}

Snapshots

deface

Welcome to Distributed Social Network

User Info

User Name: gossip

Public Key: ----- BEGIN PUBLIC KEY--—-- MIBIANBgkghkiGOwWIBAQEF AAOCAQBAMIIBCORCAQEATKFIGOIQECAVRhJeadCT 1tAacidil
aladbmysTrBQYdbdnG2ZAuUyr7+jgERoBgLHeWMCulFamE+at8RL 8u0s3ghrrjwT LPDbxWzd412UbfjdxQOANIIpRMIMB/MT mcKEAr QiR pz
TwLnWGBIGrZjoUilepprdwT ZFgnhBQNATHINFTdfo+j651yPUZZnThiGATZDBs| fAMviodMRDXFPRZHY ShY AN QJIZ0BLYB0THVYKEp O
Status: off

Peer ID: c9lg5Spsyhv4vaemi

Public IP: 10.10.10.11

Local IP:

Last Logoff:

User List

UserName Public key

----- BEGIN PUBLIC KEY--— MIIBIjANBgkghkiGIWDBAQEFAAOCAQBAMIIBCGKCAQEA1KPIEOIgBCAVRhJeasCT
1tAacldiF Ogk50PbgJ5IvQUaCTOaZ2Rht9IG UUwrvaM/xuJDuODIChERiZWXXVy
alsdbmysTrBQYdb4nG2Auyr7+jqER0BgjLHeWIMCUIF amE+atBRU18u063gMrijwT
LPbx\Wz412Ubfj4xQOQNI3pRMB/IMTMCKKANDIRpZ/CCmTeEgVIuK3cIHNGJyBu
TWLnWGEIGr2j0UilejxprawTZFgnh8QN/NVTHInF Tdfo+j651yPUzZnTbGQT7ZDBs!
fAMVtodMRbXPXZH]YSh/YXAntQJ20BLYB07HVYjk8pOg+4tWBexAIFNGbc IrBXEM XQIDAQAB --—-—END PUBLIC KEY-----

Add User

Register

peerConnections:friendsConnections:Average latency is 0 gossip0

Defacepmrmry

Online Connections

Add | Clear friends

Say something:

Availability Evaluation
(flooding sync)

* From the angle of a user:

— Mean of posts arriving latency - L

* Time difference between the spot when the post is sent
from sender, and when the post arrives at the receiver.

* From the angle of a post:

— Post propagation rate — P(%)

* The period of time it takes for a post to reach %
percentage of receivers.

Evaluation - 2

* Tool: webdriver-js
— A full head test automation library

* Environment:

— Hardware: desktop /w 8G memory
— OS: Ubuntu 12.04
— Browser: Chrome, Firefox

Evaluation - 3

* Parameter vector
— Size of the users pool - n
— Friends ratio - f
— Online period of time - T,
— Offline period of time - T
— Starting time phase — Phase

« focus or sparse
* Procedure

— Compute and assign every user’s friends - nf
e Every user does registration
* The friends map is assigned to every user.

— Launch n webdriver instances

* Auser logs in with a random phase of delay(within 10s or T), sends a post,
stays online for T, and logs out.

* Then waits for approx T, and logs in again.

Emulating...

Evaluation - 4

n f T,, Ts | Phase | L P(30%) | P(60%) | P(90%)
2 100% 10s 5s focus 5s 5s 5s 5s

10 100% 6s 60s focus 5s 2s 4s 5s

10 100% 6s 60s sparse | 24s 11s 21s 26s
10 50% 6s 60s focus 7s 3s 4s 6s

10 50% 6s 60s sparse | 43s 19s 36s 48s
10 30% 6s 60s focus 6s 3s 6s 11s
10 30% 6s 60s sparse | 56s 23s 39s 53s
10 30% 5s 100s | sparse | 139s 46s 87s 112s
10 30% 5s 200s | sparse | 253s 99s 191s 244s

*All the tests are run for 20min

Latency /w different online patterns
f: 100%, T,,:5S

250

200 —

150 —

m focus

100 S sparse

50 —

o, et

TortTon 10:1 20:1 40:1

Latency /w different online patterns
f: 50%, T,,:5S

250

200 —

150 —

m focus

100 S sparse

50 —

N — o I

TortTon 10:1 20:1 40:1

300

250

200

150

100

50

0

Latency /w different online patterns

f: 30%, T,,:5S

I

T

0]

ff:Ton 10:1

20:1

40:1

m focus

sparse

Discussion

e Based on the evaluation result:

— The flooding sync performance is acceptable in most emulated cases, note
that the perceptible latency is L — T .

* Even Facebook syncs posts to user when she is online.

— The performance of sync depends on the time when friends “meet”
online.

e Limitation

— Due to the same origin policy, all the credential and data at the peer side
are not portable.

* Future work
— Crypto process may involve message verifications.
— Scale the emulation.
— Implement and evaluate the post-specific sync method.

— To further improve the availability, more assumptions will be considered.

* E.g., we may require at least one user must be online at all times inspired by Internet
Relay Chat (IRC).

