
Distributed Social Network
in Browsers

Yang Ji

Michael Puckett

Problem

• Large scale personal data abuse and manipulation
raises question to the cloud based architecture in
social networks.

– Sensitive personal information is sold for profit and for fun.

– Evidence shows even encrypted data at the cloud can be
mined or has hidden backdoors.

Motivation

• Users desire to control their data instead of
trusting the service provider.
– Even existing sub-distributed social network like

Diaspora* has regional centralized servers.

– We deliver a pure distributed peer-to-peer
architecture

• WebRTC enables peer-to-peer communication in
browsers.
– Great opportunity to bring DSN to browsers

Threat model

• Centralized server (AVL server) :

– has access to all the users’ public key, user name, peer id.

– has NO access to any user’s private key.

• A peer :

– has access to any other’s public key, username/peerid,
anyone’s encrypted post.

– has NO access to any other’s private key.

• Any sniffer:

– has access to intercepted posts.

Design Overview

Features

• Confidentiality
– All the posts are encrypted, only the designated receivers can decrypt.

• Privacy
– The AVL server is isolated from the communication among peers.

• Availability
– The missed posts during offline period are synced and restored with

acceptable latency.

• Anonymity
– Intercepted posts reveal no origin or destination username.

Architecture

• Peer side

Architecture

• AVL Server side

Crypto Design – user credential
• New user registration

– A new user inputs the {uname, pwd}.

– A pair of RSA keys (pubkey,privkey) is generated.

– {uname, pubkey} is transmitted to the server.

– Server stores the {uname,pubkey} and assigns a peerid.

– pwd is hashed to become a key Kprivkey to encrypt the privkey; E(privkey) =

Enc Kprivkey
(privkey) is stored at the client side.

1. New user inputs
the {uname, pwd}

peer server

2. Generate RSA keys
(pubkey,privkey).

3.{uname, pubkey} is
sent to the server.

{uname, pubkey}

4. Server stores {uname,pubkey} and
assigns a peerid for this new user.

5. H(pwd) = Kprivkey

6. Store:
{uname: E(privkey)}

• User login

– User inputs the {uname, pwd}.

– Compute Kprivkey , and decrypt privkey: privkey = Dec Kprivkey
(E(privkey))

– User sends login request to server: {uname}.

– Server responses with a challenge E(C) of a random num encrypted with
user’s pubkey: E(C) = Encpubkey(C).

– User decrypts and sends back the C with Kprivkey: C’ = Dec privkey(E(C)).

– Server validates the C’ with C and directs the page to /home if good.

1. User inputs the {uname, pwd}

peer server

2. Compute Kprivkey=H(pwd),
 privkey = Dec Kprivkey

(E(privkey))

3.uname is sent to the server. {uname}

4. Server computes

and sends E(C) = Encpubkey(C).

5. Compute: C’ = Dec privkey(E(C))

{E(C)}

6. Validate C and C’.
{C’}

7.1 Login success Direct to /home

7.2 Login fail

Crypto Design - 2

Encrypt post individually for
each recipient, using their
public key

AES encrypt post message with
random key and IV. Use receiver’s
RSA public key to encrypt the
generated key and IV.

Crypto Design - 3

Store encrypted post in
indexedDB, store decrypted post
in post “cache” (for DOM
rendering)

Use current user’s RSA private
key to decrypt the AES key and
IV, then use the decrypted key
and IV to decrypt post message.

Friendship management

Synchronization

• Why do we need it
– Users stay online sparsely. But she still gets to receive

the missed posts during offline period.

– Without a centralized server, synchronization
becomes challenging.

– Leverage other peers to sync the posts.

• Design goal
– Minimize the latency between an initial posting and

the arriving at a receiver.

Flooding Sync - 1

• Basic idea:

– Try best to propagate posts among peers (even
not friends); the user can get their supposed
posts, or help propagate the sync posts.

• Confidentiality

– It is kept as only the receiver can decrypt the post
with her private key.

Flowchart

Post-specific sync (W.I.P.) - 1

• Each post has a list of all intended
recipients, so that every peer
who receives can participate in
the distributed syncing.

• Advantages:
– High availability of posts

(assuming many friend
connections in common)

– Storage efficiency because a
user only stores posts
intended for them.

• Disadvantages:
– A lot of sync communication

happening asynchronously
which may lead to
collisions/duplicates.

Proposed post representation:

post: {

 postId: ‘uniquePostId’,

 author: ‘senderPeerId’,

 text: {

 text: ‘encryptedMessage’,

 timestamp: 1234567890

 },

 receivers: {

 ‘receiverAPeerId’: false,

 ‘receiverBPeerId’: false,

 ‘receiverCPeerId’: true

 }

}

Post-specific sync (W.I.P.) - 2
Receive connection:

Post-specific sync (W.I.P.) - 3
Login and initiate connection:

Snapshots

Availability Evaluation
(flooding sync)

• From the angle of a user:

– Mean of posts arriving latency - L

• Time difference between the spot when the post is sent
from sender, and when the post arrives at the receiver.

• From the angle of a post:

– Post propagation rate – P(%)

• The period of time it takes for a post to reach %
percentage of receivers.

Evaluation - 2

• Tool: webdriver-js

– A full head test automation library

• Environment:

– Hardware: desktop /w 8G memory

– OS: Ubuntu 12.04

– Browser: Chrome, Firefox

Evaluation - 3

• Parameter vector
– Size of the users pool - n

– Friends ratio - f
– Online period of time - Ton

– Offline period of time - Toff
– Starting time phase – Phase

• focus or sparse

• Procedure
– Compute and assign every user’s friends - nf

• Every user does registration
• The friends map is assigned to every user.

– Launch n webdriver instances
• A user logs in with a random phase of delay(within 10s or Toff), sends a post,

stays online for Ton and logs out.
• Then waits for approx Toff, and logs in again.

Emulating…

Evaluation - 4

n f Ton Toff Phase L P(30%) P(60%) P(90%)

2 100% 10s 5s focus 5s 5s 5s 5s

10 100% 6s 60s focus 5s 2s 4s 5s

10 100% 6s 60s sparse 24s 11s 21s 26s

10 50% 6s 60s focus 7s 3s 4s 6s

10 50% 6s 60s sparse 43s 19s 36s 48s

10 30% 6s 60s focus 6s 3s 6s 11s

10 30% 6s 60s sparse 56s 23s 39s 53s

10 30% 5s 100s sparse 139s 46s 87s 112s

10 30% 5s 200s sparse 253s 99s 191s 244s

*All the tests are run for 20min

Latency /w different online patterns
f: 100%, Ton:5s

0

50

100

150

200

250

10:1 20:1 40:1

focus

sparse

Toff:Ton

L

Latency /w different online patterns
f: 50%, Ton:5s

0

50

100

150

200

250

10:1 20:1 40:1

focus

sparse

Toff:Ton

L

Latency /w different online patterns
f: 30%, Ton:5s

0

50

100

150

200

250

300

10:1 20:1 40:1

focus

sparse

Toff:Ton

L

Discussion

• Based on the evaluation result:
– The flooding sync performance is acceptable in most emulated cases, note

that the perceptible latency is L – Toff.
• Even Facebook syncs posts to user when she is online.

– The performance of sync depends on the time when friends “meet”
online.

• Limitation
– Due to the same origin policy, all the credential and data at the peer side

are not portable.

• Future work
– Crypto process may involve message verifications.

– Scale the emulation.

– Implement and evaluate the post-specific sync method.

– To further improve the availability, more assumptions will be considered.
• E.g., we may require at least one user must be online at all times inspired by Internet

Relay Chat (IRC).

