
CS3210: Shell & OS organization

Changwoo Min

1

Summary of last lecture
• System power on

• Load BIOS

• Find a bootable device

• Execute a boot-loader in the MBR (master boot record)

• Handover the control to the operating system kernel

2

Operating system interfaces
• How programs interact with OS

• echo hello

• How multiple programs interact each other

• echo hello | wc --chars

• cat < y | sort | uniq | wc > y1

• How OS supports such interactions

• Process

• System call & files

3

Kernel space vs. User space
• Kernel

• a special program that provides services to running programs

• Process

• has memory containing instructions, data, and a stack

• System call

• interface between kernel space and user space

• e.g., open(), close(), read(), fork(), ...

4

A kernel and two user processes

• Protection between user and kernel spaces

• CPU's mechanism: privileged mode vs. unprivileged mode

• each process in user space can access only its own memory

• strace

• a tool to trace system calls

5

https://en.wikipedia.org/wiki/Strace

Example: echo hello
$ strace echo hello

 execve("/usr/bin/echo", ["echo", "hello"], [/* 60 vars */]) = 0
 ...
 write(1, "hello\n", 6) = 6
 ...
 exit_group(0) = ?

• system calls: execve, write, exit_group

6

Example: echo hello > output
$ strace -f sh -c "echo hello > output"

 execve("/usr/bin/sh", ["sh", "-c", "echo hello > output"], [/* 60vars*/]) =
 ...
 open("output", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3
 ...
 dup2(3, 1) = 1
 close(3) = 0
 ...
 write(1, "hello\n", 6) = 6
 ...
 exit_group(0) = ?

7

More examples
$ echo hello | wc --chars
$ uptime

• Pipe between echo and wc

• Get uptime from /proc/loadavg

8

Shell
• A program that reads commands from the user and executes them

• One of user interface to UNIX-like systems

• A user program, not part of the kernel

• easily replaceable

• e.g., bash, zsh, csh, etc.

• Shows power of system call interface

9

Processes and memory
 01 int pid = fork();
 02 if(pid > 0) { /* parent */
 03 pid = wait();
 04 } else if(pid == 0){ /* child */
 05 exec("/bin/echo", "hello");
 06 exit(); /* never be here */
 07 }

• fork system call create a new process

• a child process has the same memory contents with its parent

• exec system call loads new memory image from a file

• wait system call waits until child exits

10

File descriptors
• A small integer representing a kernel-managed object

• file, directory, device, pipe, etc.

• Abstract away the differences between files, pipes, etc.

• making them all look like byte stream

• a process may read from or write to file descriptors

• Maintains an offset associated with it

• read(fd, buf, n)

• write(fd, buf, n)

11

File descriptor table
• Each process has a file descriptor table

• 0, 1, 2: standard input, output, error

• 3, ...: open("output", ...)

• File descriptor in xv6 and linux kernel

• an index of the per-process FD table

• System calls which allocate new file descriptor

• open(), dup(), pipe(), ...

• A newly allocated file descriptor

• the lowest-numbered unused descriptor in per-process table

12

Example: cat
• cat input.txt, cat < input.txt, ls | cat

 01 for(;;){
 02 n = read(0, buf, sizeof(buf)); /* stdin */
 03 if(n == 0)
 04 break;
 05 if(n < 0){
 06 fprintf(2, "read error\n"); /* stderr */
 07 exit();
 08 }
 09 if(write(1, buf, n) != n){ /* stdout */
 10 fprintf(2, "write error\n"); /* stder */
 11 exit();
 12 }
 13 }

13

Example: a shell for "cat < input.txt"
 01 argv[0] = "cat";
 02 argv[1] = 0;
 03 if(fork() == 0) {
 04 close(0);
 05 open("input.txt", O_RDONLY); /* what is fd of open? why? */
 06 exec("cat", argv);
 07 }

• fork also copies the file descriptor table

• a parent and its child process shares the file descriptor

• exec does not override the file descriptor

14

Duplicating a file descriptor
 01 fd = dup(1);
 02 write(1, "hello ", 6);
 03 write(fd, "world\n", 6);

• dup system call duplicates an existing file descriptor

• a returning new FD refers the same file

• dup2(newfd, oldfd)

• ls existing-file non-existing-file > tmp1 2>&1

• 2>&1: redirecting stderr to stdout

• close(2); dup(1);

15

Pipes
• A unidirectional data channel that can be used for interprocess

communication

• Exposes a pair a file descriptors

• int pipe(int pipefd[2])

• pipefd[0] is for reading

• pipefd[1] is for writing

16

Example: a shell for "echo hello | wc --char"
 01 int p[2];
 02 char *argv[2];
 03 argv[0] = "wc";
 04 argv[1] = 0;
 05 pipe(p); /* create a pipe */
 06 if(fork() == 0) { /* child process */
 07 close(0);
 08 dup(p[0]); /* stdin = p[0] */
 09 close(p[0]);
 10 close(p[1]);
 11 exec("/bin/wc", argv);
 12 } else { /* parent process */
 13 write(p[1], "hello\n", 6);
 14 close(p[0]);
 15 close(p[1]);
 16 }

17

Code review: xv6 shell (xv6-public/sh.c)
• An ordinary user-space program

• main(): entry function

• parsecmd(): parse command line

• rundcmd(): execute programs

• Can you spot followings?

• executing a simple command: echo hello

• redirection: echo hello > output

• pipes: echo hello | wc --char

• Why cd is implemented at the shell?

18

Summary & Questions
• Now we have a feel for what Unix system call interface provides

• How to implement the interface?

• Why have an OS at all? why not just a library?

• then apps are free to use it, or not -- flexible apps can directly

interact with hardware

• some tiny OSes for embedded processors work this way

19

Operating system organization
• Goal: process isolation & sharing

• a process should not corrupt the memory of the kernel or another

process

• nor consume all the CPU time/memory

• nor run arbitrary privileged instructions, etc.

• Applications must use OS interface, cannot directly interact with

hardware so that apps cannot harm operating system

20

Key design factors
• What to put below/above the system call interface

• How to isolate user space and kernel space

• for applications not to harm kernel space

21

Hardware support for isolation
• Processors support user mode and kernel mode

• some instructions can only be executed in kernel mode

• e.g., change the address translation map, talk to I/O devices

• If an application executes a privileged instruction, hardware doesn't

allow it

• instead switches to kernel mode then kernel can clean up

22

Hardware isolation in x86
• x86 support: kernel/user mode flag

• CPL (current privilege level): lower 2 bits of %cs

• 0: kernel, privileged

• 3: user, unprivileged

• system calls: controlled transfer

• int or sysenter instruction set CPL to 0

• set CPL to 3 before going back to user space

23

Monolithic kernel: Linux, xv6, etc.
• A traditional design: all of the OS runs in kernel mode

• Kernel interface ~= system call interface

• Good: easy for subsystems to cooperate

• one cache shared by file system and virtual memory

• Bad: interactions are complex

• leads to bugs, no isolation within kernel

24

Alternative: microkernel design
• Many OS services run as ordinary user programs

• e.g., file system in a file server

• Kernel implements minimal mechanism to run services in user space

• IPC, virtual memory, threads

• Kernel interface != system call interface

• applications talk to servers via IPCs

• Good: more isolation

• Bad: IPCs may be slow

25

Debate
• Tanenbaum-Torvalds debate

• Most real-world kernels are mixed: Linux, OS X, Windows

• e.g., X Window System

26

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/X_Window_System

