CS3210: Shell & OS organization

Changwoo Min

Summary of last lecture

System power on

Load BIOS

Find a bootable device

Execute a boot-loader in the MBR (master boot record)

Handover the control to the operating system kernel

Operating system interfaces

How programs interact with OS
echo hello
How multiple programs interact each other
echo hello | wc --chars
cat <y | sort | uniqg | wc > vyl
How OS supports such interactions
Process

System call & files

Kernel space vs. User space

Kernel

a special program that provides services to running programs
Process

has memory containing instructions, data, and a stack
System call

interface between kernel space and user space

e.g., open(), close(), read(), fork(),..

A kernel and two user processes

cpace | »
space
P system

call

kernel

space Kernel

Y

Protection between user and kernel spaces
CPU’s mechanism: privileged mode vs. unprivileged mode

each process in user space can access only its own memory

strace

a tool to trace system calls

https://en.wikipedia.org/wiki/Strace

Example: echo hello

$ strace echo hello

execve("/usr/bin/echo", ["echo", "hello"], [/* 60 vars */]) = 0
write(l, "hello\n", 6) = 6

exit_group(©) = 7?

system calls: execve, write, exit group

Example: echo hello > output

$ strace -f sh -c "echo hello > output"”

execve("/usr/bin/sh", ["sh", "-c", "echo hello > output"], [/* 60vars*/
open("output", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3

dup2(3, 1) =1

close(3) =0
write(l, "hello\n", 6) = 6

exit_group(©) = 7

More examples

$ echo hello | wc --chars
$ uptime

Pipe between echo and wc

Get uptime from /proc/loadavg

Shell

A program that reads commands from the user and executes them
One of user interface to UNIX-like systems
A user program, not part of the kernel

easily replaceable

e.g., bash, zsh, csh, etc.

Shows power of system call interface

Processes and memory

01 int pid = fork();

02 if(pid > 0) { /* parent */

03 pid = wait();

04 3} else if(pid == 0){ /* child */

05 exec("/bin/echo", "hello");

06 exit(); /* never be here */
07 3}

fork system call create a new process
a child process has the same memory contents with its parent
exec system call loads new memory image from a file

wait system call waits until child exit s

10

File descriptors

A small integer representing a kernel-managed object
file, directory, device, pipe, etc.
Abstract away the differences between files, pipes, etc.
making them all look like byte stream
a process may read from or write to file descriptors
Maintains an offset associated with it
read(fd, buf, n)
write(fd, buf, n)

11

File descriptor table

Each process has a file descriptor table

0, 1, 2: standard input, output, error

3,.... open("output”, ...)
File descriptor in xv6 and linux kernel

an index of the per-process FD table
System calls which allocate new file descriptor

open(), dup(), pipe(),..

A newly allocated file descriptor

the lowest-numbered unused descriptor in per-process table

12

Example: cat

cat input.txt, cat < input.txt, ls | cat

01 for(;;){

2 n = read(®, buf, sizeof(buf));
03 if(n == 0)

04 break;

05 if(n < 0){

06 fprintf(2, "read error\n');
Q7 exit();

08 }

09 if(write(l, buf, n) !I= n){

10 fprintf(2, "write error\n'");
11 exit();

12 3

13 3}

/* stdin */

/* stderr */

/* stdout */
/* stder */

13

14

Example: a shell for “cat < input.txt”

01 argv[@] = "cat";

02 argv[l] = 0;

03 if(fork() == 0) {

04 close(9);

05 open("input.txt", O_RDONLY); /* what is fd of open? why? */
06 exec('"cat", argv);

07 3}

fork also copies the file descriptor table
a parent and its child process shares the file descriptor

exec does not override the file descriptor

Duplicating a file descriptor

01 £d = dup(l);
02 write(1l, "hello ", 6);
03 write(fd, "world\n", 6);

dup system call duplicates an existing file descriptor
a returning new FD refers the same file
dup2(newfd, oldfd)

ls existing-file non-existing-file > tmpl 2>&1
2>&1 :redirecting stderr to stdout

close(2); dup(l);

15

Pipes

A unidirectional data channel that can be used for interprocess
communication
Exposes a pair a file descriptors

int pipe(int pipefd[2])

pipefd[0] is for reading

pipefd[1] is for writing

16

Example: a shell for "echo hello | wc --char”

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

int p[2];

char *argv[Z];

argv[d] "we'"';

argv[1l] Q;

pipe(p); /* create a pipe */

if(fork() == 0) { /* child process */
close(9);
dup(p[9]); /* stdin = p[0] */
close(p[91);
close(p[1]);
exec("/bin/wc'", argv);

} else { /* parent process */
write(p[1], "hello\n", 6);
close(p[@]);
close(p[11);

by

17

18

Code review: xvé6 shell (xv6-public/sh.c)

An ordinary user-space program
main() :entry function
parsecmd() : parse command line
rundcmd() : execute programs

Can you spot followings?
executing a simple command: echo hello
redirection: echo hello > output
pipes. echo hello | wc --char

Why cd is implemented at the shell?

Summary & Questions

Now we have a feel for what Unix system call interface provides

How to implement the interface?
Why have an OS at all? why not just a library?

then apps are free to use it, or not -- flexible apps can directly

interact with hardware

some tiny OSes for embedded processors work this way

19

Operating system organization

Goal: process isolation & sharing
a process should not corrupt the memory of the kernel or another
process
nor consume all the CPU time/memory
nor run arbitrary privileged instructions, etc.
Applications must use OS interface, cannot directly interact with

hardware so that apps cannot harm operating system

20

Key design factors

What to put below/above the system call interface
How to isolate user space and kernel space

for applications not to harm kernel space

21

Hardware support for isolation

Processors support user mode and kernel mode

some instructions can only be executed in kernel mode

e.g., change the address translation map, talk to 1/0 devices
If an application executes a privileged instruction, hardware doesn't
allow it

instead switches to kernel mode then kernel can clean up

22

Hardware isolation in x86

x86 support: kernel/user mode flag
CPL (current privilege level): lower 2 bits of %cs
0: kernel, privileged
3. user, unprivileged
system calls: controlled transfer
int or sysenter instruction set CPLto 0

set CPL to 3 before going back to user space

23

Monolithic kernel: Linux, xv6, etc.

A traditional design: all of the OS runs in kernel mode
Kernel interface ~= system call interface
Good: easy for subsystems to cooperate

one cache shared by file system and virtual memory
Bad: interactions are complex

leads to bugs, no isolation within kernel

24

25

Alternative: microkernel design

Many OS services run as ordinary user programs
e.g., file system in a file server

Kernel implements minimal mechanism to run services in user space
IPC, virtual memory, threads

Kernel interface != system call interface
applications talk to servers via IPCs

Good: more isolation

Bad: IPCs may be slow

Debate

Tanenbaum-Torvalds debate

Most real-world kernels are mixed: Linux, OS X, Windows

e.g., X Window System

26

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/X_Window_System

