CS3210: Virtual memory

applications

Taesoo Kim edited by Tim Andersen

Administrivia

(Oct 4) Quiz #1. Lab1-3, Ch 0-2, Appendix A/B
Open book/laptop
No Internet

(Oct 6) Time to brainstorm project ideas!!

Prep question: submit 1-page pre-proposal (by Oct 17, 10pm)

Recap: address translation

CPU

Selector

Offset

Q: what are the advantanges of the address translation?

Logical
Address

Segment

»| Translation

Linear
Address

Page
Translation

X GB

Physical

Address >

Q: what are the disadvantanges of the address translation?

o —

Recap: page translation

CR3

Linear Address
12

10

10

Physical Address

20

12

Dir |Table| Offset PPN Offset
| A A
20 12
1023
-
> PPN |Flags
20 12
1023 T
1
Y
— -
> PPN [Flags Page Table

= —

Page Directory

Recap: design trade-off

We devide a 32 bit address into [dir=10]|tbl=10|off=12]
[dir=00|tbl=20|off=12]?
[dir=10|tbl=00]|off=22]?
[dir=05|tbl=15|off=12]?
[dir=15|tbl=05|off=12]?

Q: what's "super page"? good or bad?

So, why paging is good?

Primary purpose: isolation

each process has its own address space
Benefits:

memory utilization, fragmentation, sharing, etc.
Level-of-indirection

provides kernel with opportunity to do cool stuff

Today: potential applications

Kernel tricks (e.g., one zero-filled page)
Faster system calls (e.g., copy-on-write fork)
New features (e.g., memory-mapped files)

NOTE : project idea?

Virtual memory recap

CPU asks OS to set up a data structure for VA - PA
per-process page table; flags (P/W/U/...)
switch page table with process
JOS: inc/memlayout.h
XVO
struct proc in proc.h
scheduler() - switchuvm(p) -

lcr3(v2p(p-pgdir))

Virtual memory recap

Linux
cat /proc/iomem
cat /proc/self/map (orreplace self with a PID)
are these physical or virtual addresses
“All problems in computer science can be solved by another level of

indirection”

Code: paging In Xxv6 (once more)

entry() in entry.S
kinitl() in main.c

kvmalloc() in main.c

$ cat /proc/iomem
00000000-00000fff : reserved
00001000-0009cfff : System RAM
0009d000-0009ffff : reserved

The first address space In xv6

LT EEE TR + <- OXFFFFFFFF

R T +
/ | kernel text/data | (kernel)
A R + <- 0x80100000
+ | BIOS |
physical mem A e T + <- 0x80000000
/ /| heap | (KERNBASE)
I N B S e T +
| kernel text/data | + | stack |
R e A e +
| BIOS |/ | wuser text/data | (initcode)

LT EEEE R R + LR R + <- Ox00000000

11

Protection: preventing NULL
dereference

Q: what's NULL dereference? how serious? in xv6? (I EsIeN)

NULL pointer dereference exception

Q: how would you implement this for Java, say obj->field
Trick: put a non-mapped page at VA zero
Useful for catching program bugs

Q: limitations?

12

https://blogs.oracle.com/ksplice/entry/much_ado_about_null_exploiting1

13

Protection: preventing stack
overflow

Q: what's stack overflow? how serious? in xv6? (check SNePIe!)

"Toyota's major stack mistakes" (see Michael Barr's Ell N ANIeIE)

Trick: put a non-mapped page right below user stack

JOS: inc/memlayout.h

UTOP,UENVS ------ e T + Oxeec00000
UXSTACKTOP -/ | User Exception Stack | RW/RW PGS
L + Oxeebff000
| Empty Memory (*) | --/-- PGS

USTACKTOP ---> H#----mmmmmmm e oo m oo + OxeebfeB00

https://tc.gtisc.gatech.edu/cs6265/2015/cal.html
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

Feature: "virtual™ memory

Q: can we run an app. requiring > 2GB in xv6?

Q: what about an app. requiring > 1GB on a machine with 512MB?

14

15

Feature: "virtual™ memory

Applications often need more memory than physical memory
early days: two floppy drives
strawman: applications store part of state to disk and load back
later
hard to write applications

Virtual memory: offer the illusion of a large, continuous memory
swap space:. OS pages out some pages to disk transparently
distributed shared memory: access other machines' memory

across network

Feature: "virtual™ memory

$ free
total used free shared buff/cache available

Mem: 196G 5.1G 424M 1.4G 13G 12G
Swap: 0B 0B 0B

16

Feature: memory-mapped files

Q: what's benefit of having open() , read() , write() ?
mmap () : map files, read/write files like memory
Simple programming interface, memory read/write
Avoid data copying: e.g., send an mmaped file to network
compare to using read /write
no data transfer from kernel to user

Q: when to page-in/page-out content?

17

Feature: single zero page

Q: calloc() ? memset(buf, 0, buflen) ?
Often need to allocate a page with zeros to start with
Trick: keep one zero page for all such pages

Q: what if one process writes to the page?

18

Feature: copy-on-write (CoW)
fork (Lab 4)

Q: what's fork() ? and what happens when forking?
Observation: child and parent share most of the data

mark pages as copy-on-write

make a copy on page fault
Other sharing

multiple guest OSes running inside the same hypervisor

shared objects: .so/ .dl1l files

19

Feature: virtual linear page I
tables

Q: how big is the page table if we have a single level (4KB pages)?

Q: how to make all page tables show up on our address space?

Feature: virtual linear page
tables

uvpt[n] givesthe PTE of page n
Self mapping: set one PDE to point to the page directory

CPU walks the tree as usual, but ends up in one level up

21

Feature: virtual linear page I
tables

Next tutorial

Lazy allocation

Grow stack on demand

References

MIT 6.828
Wikipedia

The Internet

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

CS3210: Virtual memory applications

Taesoo Kim edited by Tim Andersen

