
CS3210: Processes and switching

Taesoo Kim edited by Kyle Harrigan

1

Administrivia
• (Nov 1) Team Proposal Day (just slides, target 3-5 min/team)

• Problem statement

• Idea

• Demo plan (aka evaluation)

• Timeline

• DUE : submit slides (as a team) by 10 pm, Oct 31

• NOTE : if you submit early, we can give you feedback

2

Summary of last lectures
• Power-on → BIOS → bootloader → kernel → user programs

• OS: abstraction, multiplexing , isolation, sharing

• Design: monolithic (xv6) vs. micro kernels (jos)

• Abstraction: process , system calls

• Isolation mechanisms: CPL, segmentation, paging

3

Today's plan
• Aside: dirtyc0w

• A few more notes on locking in xv6

• About process

• For multiplexing (e.g., more processes than CPUs)

• In particular, switching and scheduling

4

dirtyc0w (CVE-2016-5195)
• What is it?

• Race condition in kernel memory manager

• 11 years old! Only recently reported (Oct 19, 2016 by Phil Oester) --

perhaps only recently exploitable?

• Why do we care for purposes of this class?

• Extremely relevant to in-class topics (memory management, race

conditions, paging, copy-on-write, etc.)

• As always, a simple bug in kernel can have drastic consequences

• Let us learn some more

5

https://www.youtube.com/watch?v=kEsshExn7aE

Locks
• Mutual exclusion : only one core can hold a given lock

• concurrent access to the same memory location, at least one write

• example: acquire(l); x = x + 1; release(l);

6

Example: why do we need a lock?
00 struct file* filealloc(void) {
01 struct file *f;
02
03 acquire(&ftable.lock);
04 for(f = ftable.file; f < ftable.file + NFILE; f++){
05 if(f->ref == 0){
06 f->ref = 1;
07 release(&ftable.lock);
08 return f;
09 }
10 }
11 release(&ftable.lock);
12 return 0;
13 }

7

Locks
• Mutual exclusion : only one core can hold a given lock

• concurrent access to the same memory location, at least one write

• example: acquire(l); x = x + 1; release(l);

• Atomic execution : hide intermediate state

• another example: transfer money from account A to B

• put(a + 100) and put(b - 100) must be both effective, or

neither

8

A different way to think about locks
• Locks help operations maintain invariants on a data structure

• assume the invariants are true at start of operation

• operation uses locks to hide temporary violation of invariants

• operation restores invariants before releasing locks

• Q: put(a + 100) and put(b - 100) ?

9

Strawman: locking
01 struct lock { int locked; };
02
03 void acquire(struct lock *l) {
04 for (;;) {
05 if (l->locked == 0) { // A: test
06 l->locked = 1; // B: set
07 return;
08 }
09 }
10 }
11
12 void release(struct lock *l) {
13 l->locked = 0;
14 }

10

Problem: concurrent executions on line 05
 // process A // process B
 if (l->locked == 0) if (l->locked == 0)
 l->locked = 1; l->locked = 1;

• Recall:

$ while true; do ./count 2 10 | grep 10 ; done
cpu = 2, count = 10
...

11

Relying on an atomic operation
01 struct lock { int locked; };
02
03 void acquire(struct lock *l) {
04 for (;;) {
05 if (xchg(&l->locked, 1) == 0)
06 return;
07 }
08 }
09
10 void release(struct lock *l) {
11 // Q?
12 xchg(&l->locked, 0);
13 }

12

Spinlock in xv6
• Pretty much same, but provide debugging info

01 struct spinlock {
02 uint locked; // Is the lock held?
03
04 // Q?
05 char *name; // Name of lock.
06 struct cpu *cpu; // The cpu holding the lock.
07 uint pcs[10]; // The call stack (an array of program counters)
08 // that locked the lock.
09 };

13

acquire() in xv6
01 void acquire(struct spinlock *lk) {
02 // Q1?
03 pushcli();
04 // Q2?
05 if (holding(lk))
06 panic("acquire");
07
08 while (xchg(&lk->locked, 1) != 0)
09 ;
10
11 lk->cpu = cpu;
12 getcallerpcs(&lk, lk->pcs);
13 }

14

release() in xv6
01 void release(struct spinlock *lk) {
02 // Q1?
03 if (!holding(lk))
04 panic("release");
05
06 // Q2?
07 lk->pcs[0] = 0;
08 lk->cpu = 0;
09
10 xchg(&lk->locked, 0);
11
12 // Q3?
13 popcli();
14 }

15

Why spinlocks?
• Q: don't they waste CPU while waiting?

• Q: why not give up the CPU and switch to another process, let it run?

• Q: what if holding thread needs to run; shouldn't you yield CPU?

16

Spinlock guidelines
• hold for very short times

• don't yield CPU while holding lock

• (un)fairness issues: FIFO ordering?

• NOTE "blocking" locks for longer critical sections

• waiting threads yield the CPU

• but overheads are typically higher (later)

17

Problem 1: deadlock (e.g., double acquire)
• Q: what happens in xv6?

01 struct spinlock lk;
02 initlock(&lk, "test lock");
03 acquire(&lk);
04 acquire(&lk);

18

Problem 2: interrupt (preemption)
• Race in iderw() (ide.c)

• sti() after acquire()

• cli() before release()

19

Q: iderw()
• Q: what goes wrong with adding sti/cli in iderw?

• Q: what ensures atomicity between processors

• Q: what ensures atomicity within a single processor?

20

What about racing in file.c
• Race in filealloc() (file.c)

• Q: ftable.lock ?

• sti() after acquire()

• cli() before release()

21

Q: filealloc()
• Q: could the disk interrupt handler run while interrupts are enabled?

• Q: does any any interrupt handler grab the ftable.lock ?

• Q: what interrupt could cause trouble?

22

Scheduling
• Which process to run?

• Pick one from a set of RUNNABLE processes (or env in jos)

• Q: what have you seen from lab?

• (next lecture) Switching/scheduling in detail

23

Scheduling: design space
• Q: Preemptive vs. cooperative?

• Q: Global queue vs. per-CPU queue?

24

Scheduling: design space
• Scalability: w/ many runnable processes?

• Granularity (timeslice, quantum): 10ms vs 100ms? (dynamic? tickless?)

• Fairness: time quota, epoch (inversion? group?)

• QoS: priority? (e.g., nice)

• Constraints: realtime, deadlines (e.g., airplane)

• etc: resource starvation, performance consolidation (e.g., cloud)

25

Scheduling: difficult in practice
• No perfect/universal solution/policy

• Contradicting goals:

• maximizing throughput vs. minimizing latency

• minimizing response time vs. maximizing scalability

• maximizing fairness vs. maximizing scalability

26

Example: round-robin scheduling

• Simple: assign fixed time unit per process

• Starvation-free (no priority)

27

Complexity in real scheduling algorithms
• Linux?

28

Complexity in real scheduling algorithms
• Linux

• kernel/sched/*.c : 17k LoC with 7k lines of comments

• vs. your RR in jos? 10 LoC?

01 for (j = 1; j <- NENV; j++) {
02 k = (j + i) % NENV;
03 if (envs[k].env_status == ENV_RUNNABLE)
04 env_run(&envs[k]);
05 }

29

Summary (Wikipedia)
30

Example: available options in Linux
$ sudo sysctl -A | grep "sched" | grep -v "domain"
kernel.sched_child_runs_first = 0
kernel.sched_latency_ns = 18000000
kernel.sched_migration_cost_ns = 500000
kernel.sched_min_granularity_ns = 2250000
kernel.sched_rr_timeslice_ms = 30
kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_shares_window_ns = 10000000
kernel.sched_time_avg_ms = 1000
kernel.sched_wakeup_granularity_ns = 3000000
...

$ less /proc/sched_debug
$ less /proc/[pid]/sched

31

Characterizing processes
• CPU-bound vs IO-bound

• Interactive processes (e.g., vim, emacs)

• Batch processes (e.g., cronjob)

• Real-time processes (e.g., audio/video players)

32

Scheduling policies in Linux
• SCHED_FIFO : first in, first out, real time processes

• SCHED_RR : round robin real time processes

• SCHED_OTHER : normal time/schedule sharing (default)

• SCHED_BATCH : CPU intensive processes

• SCHED_IDLE : Very low prioritized processes

33

Example
• Q: count.c ?

$ sudo ./count 3 1000000000
8522: runs
8524: runs
8523: runs
8523: 2.05 sec
8522: 2.34 sec
8524: 2.49 sec

34

Example: available policies
$ chrt -m
SCHED_OTHER min/max priority : 0/0
SCHED_FIFO min/max priority : 1/99
SCHED_RR min/max priority : 1/99
SCHED_BATCH min/max priority : 0/0
SCHED_IDLE min/max priority : 0/0

35

Example: FIFO (real time scheduling)
$ sudo ./count 10 1000000000 "chrt -f -p 99"
...

36

References
• Intel Manual

• UW CSE 451

• OSPP

• MIT 6.828

• Wikipedia

• The Internet

37

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

