CS3210: Processes and switching

Taesoo Kim edited by Kyle Harrigan

Administrivia

(Nov 1) Team Proposal Day (just slides, target 3-5 min/team)
Problem statement
ldea
Demo plan (aka evaluation)
Timeline
DUE : submit slides (as a team) by 10 pm, Oct 31

NOTE : if you submit early, we can give you feedback

Summary of last lectures

Power-on — BIOS — bootloader — kernel = user programs
OS: abstraction, multiplexing , isolation, sharing

Design: monolithic (xv6) vs. micro kernels (jos)

Abstraction: process ,system calls

Isolation mechanisms: CPL, segmentation, paging

Today's plan

Aside: dirtycOw
A few more notes on locking in xvé6
About process
For multiplexing (e.g., more processes than CPUs)

In particular, switching and scheduling

dirtycOw (CVE-2016-5195)

What is it?
Race condition in kernel memory manager
11 years old! Only recently reported (Oct 19, 2016 by Phil Oester) --
perhaps only recently exploitable?

Why do we care for purposes of this class?
Extremely relevant to in-class topics (memory management, race
conditions, paging, copy-on-write, etc.)
As always, a simple bug in kernel can have drastic consequences

Let us learn some more

https://www.youtube.com/watch?v=kEsshExn7aE

Locks

Mutual exclusion : only one core can hold a given lock
concurrent access to the same memory location, at least one write

example: acquire(l); x = x + 1; release(l);

Example: why do we need a lock?

00 struct file* filealloc(void) {
01 struct file *f;

02

03 acquire(&ftable.lock);

04 for(f = ftable.file; f < ftable.file + NFILE; f++){
05 if(f->ref == 0){

06 f->ref = 1;

Q7 release(&ftable.lock);
08 return f;

09 }

10 }

11 release(&ftable.lock);

12 return 0;

13)

Locks

Mutual exclusion : only one core can hold a given lock
concurrent access to the same memory location, at least one write
example: acquire(l); x = x + 1; release(l);
Atomic execution : hide intermediate state
another example: transfer money from account Ato B
put(a + 100) and put(b - 100) must be both effective, or

neither

A different way to think about locks

Locks help operations maintain invariants on a data structure
assume the invariants are true at start of operation
operation uses locks to hide temporary violation of invariants
operation restores invariants before releasing locks

Q: put(a + 100) and put(b - 100) ?

Strawman: locking

01 struct lock { int locked; };
02

03 void acquire(struct lock *1) {
04 for (;;) {

05 if (l->locked == 0) { // A: test
06 L->locked = 1; // B: set
07 return;

08 }

09 }

10 }

11

12 void release(struct lock *1) {

13 L->locked = 0;

14 }

10

Problem: concurrent executions on line 05

// process A // process B
if (1->locked == 0) if (1->locked == 0)
lL->locked = 1; L->locked = 1;
Recall:

$ while true; do ./count 2 10 | grep 10 ; done
cpu = 2, count = 10

11

Relying on an atomic operation

01 struct lock { int locked; };

02

03 void acquire(struct lock *1) {
04 for (;;) {

05 if (xchg(&l->locked, 1) == 0)
06 return;

07 }

08 }

09

10 void release(struct lock *1) {
11 // Q?

12 xchg(&l->locked, 0);

13 3

12

Spinlock in xvé6

Pretty much same, but provide debugging info

01
02
03
04
05
06
07
08
09

struct spinlock {

uint locked;

// Q7

char *name;
struct cpu *cpu;
uint pcs[10];

// Is the lock held?

// Name of lock.

// The cpu holding the lock.

// The call stack (an array of program counters)
// that locked the lock.

acquire() inxvé

01
02
03
04
05
06
Q7
08
09
10
11
12
13

void acquire(struct spinlock *1lk) {

// Q17
pushcli();

// Q27
if (holding(lk))
panic("acquire');

while (xchg(&lk->locked, 1) != 0)

b

Lk->cpu = cpu;
getcallerpcs(&lk, lk->pcs);

14

release() inxvé

01
02
03
04
05
06
Q7
08
09
10
11
12
13
14

void release(struct spinlock *1lk) {

// Q17
if (!'holding(lk))
panic('"release');

// Q27
Lk->pcs[@] = 0;
Lk->cpu = 0;

xchg(&lk->locked, @);

// Q37
popcli();

15

Why spinlocks?

Q: don't they waste CPU while waiting?
Q: why not give up the CPU and switch to another process, let it run?

Q: what if holding thread needs to run; shouldn't you yield CPU?

16

Spinlock quidelines

hold for very short times

don't yield CPU while holding lock

(un)fairness issues: FIFO ordering?

NOTE "blocking” locks for longer critical sections
waiting threads yield the CPU

but overheads are typically higher (later)

17

||ii|

Problem 1: deadlock (e.g., double acquire)

Q: what happens in xv6?

01 struct spinlock Llk;

02 initlock(&lk, "test lock");
03 acquire(&lk);

04 acquire(&lk);

Problem 2: interrupt (preemption)

Race in iderw() (ide.c)
sti() after acquire()

cli() before release()

Q: iderw()

Q: what goes wrong with adding sti/cli in iderw?
Q: what ensures atomicity between processors

Q: what ensures atomicity within a single processor?

20

What about racing in file.c

Racein filealloc() (file.c)
Q: ftable.lock ?
sti() after acquire()

cli() before release()

Q: filealloc()

Q: could the disk interrupt handler run while interrupts are enabled?
Q: does any any interrupt handler grab the ftable. lock ?

Q: what interrupt could cause trouble?

22

Scheduling

Which process to run?
Pick one from a set of RUNNABLE processes (or env in jos)
Q: what have you seen from lab?

(next lecture) Switching/scheduling in detail

23

Scheduling: design space

Q: Preemptive vs. cooperative?

Q: Global queue vs. per-CPU queue?

Scheduling: design space

Scalability: w/ many runnable processes?

Granularity (timeslice, quantum): 10ms vs 100ms? (dynamic? tickless?)
Fairness: time quota, epoch (inversion? group?)

QoS: priority? (e.g., nice)

Constraints: realtime, deadlines (e.g., airplane)

etc: resource starvation, performance consolidation (e.g., cloud)

25

Scheduling: difficult in practice

No perfect/universal solution/policy

Contradicting goals:
maximizing throughput vs. minimizing latency
minimizing response time vs. maximizing scalability

maximizing fairness vs. maximizing scalability

26

Example: round-robin scheduling

o
s
w
@

=] o -~ (=] W S w ~ -
(= T e e e T s T T)
= = = = [=] (=] [=] [=] [=]
[T T

Simple: assign fixed time unit per process

Starvation-free (no priority)

27

Complexity in real scheduling algorithms

Linux?

Complexity in real scheduling algorithms

Linux
kernel/sched/*.c : 17k LoC with 7k lines of comments

vs.your RR in jos? 10 LoC?

01 for (j = 1; j <- NENV; j++) {

02 k = (j + i) % NENV;

03 if (envs[k].env_status == ENV_RUNNABLE)
04 env_run(&envs[k]);

05 Y

Summary (Wikipedia)

Operating System Preemption Algorithm
Amiga OS Yes Prioritized round-robin scheduling
FreeBSD Yes Multilevel feedback queue
Linux kernel before 2.6.0 Yes Multilevel feedback queue
Linux kernel 2.6.0-2.6.23 Yes O(1) scheduler
Linux kernel after 2.6.23 Yes Completely Fair Scheduler
Mac OS pre-9 None Cooperative scheduler
Mac OS 9 Some ng;r;itézzes;c:;éhéllizizgMP tasks, and cooperative
Mac OS X Yes Multilevel feedback queue
NetBSD Yes Multilevel feedback queue
Solaris Yes Multilevel feedback queue
Windows 3.1x None Cooperative scheduler
Windows 95,5,
Windows NT (including 2000, XP, Yes Multilevel feedback queue

Vista, 7, and Server)

30

Example: available options in Linux

$ sudo sysctl -A | grep "sched" | grep -v "domain"
kernel.sched_child_runs_first = 0
kernel.sched_latency_ns = 18000000
kernel.sched_migration_cost_ns = 500000
kernel.sched_min_granularity_ns = 2250000
kernel.sched_rr_timeslice_ms = 30
kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_shares_window_ns = 10000000
kernel.sched_time_avg_ms = 1000
kernel.sched_wakeup_granularity_ns = 3000000

$ less /proc/sched_debug
$ less /proc/[pid]/sched

Characterizing processes

CPU-bound vs |0-bound
Interactive processes (e.g.,vim, emacs)
Batch processes (e.g., cronjob)

Real-time processes (e.g.,audio/video players)

32

Scheduling policies in Linux

SCHED FIFO :first in, first out, real time processes
SCHED RR :round robin real time processes

SCHED OTHER : normal time/schedule sharing (default)
SCHED BATCH : CPU intensive processes

SCHED _IDLE : Very low prioritized processes

33

Example

Q: count.c?

$ sudo ./count 3 1000000000

8522:
8524
8523:
8523:
8522:
8524

runs
runs
runs
2.05 sec
2.34 sec
2.49 sec

34

Example: available policies

$ chrt -m

SCHED_OTHER min/max priority
SCHED_FIFO min/max priority
SCHED_RR min/max priority
SCHED_BATCH min/max priority
SCHED_IDLE min/max priority

: 0/0
1 1/99
. 1/99
: 0/0
: 0/0

35

Iiiil

Example: FIFO (real time scheduling)

$ sudo ./count 10 1000000000 '"chrt -f -p 99"

References

MIT 6.828
Wikipedia

The Internet

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

