
CS3210: Filesystem

Kyle Harrigan

1



Administrivia
•  Demo day: Dec 6 only

•  Final project (write-up): Dec 9 (pushed one week)

•  Quiz #2. Lab3-5, Ch 3-6, Nov 29

2



Lecture plan:
•  File systems

•  API → disk layout

•  dumpfs

•  Buffer cache

•  xv6 in action - code walk

3



Storage trend
4



Why are file systems useful?
•  Durability across restarts

•  Naming and organization

•  Sharing among programs and users

5



Why interesting?
•  Crash recovery

•  Performance

•  API design for sharing

•  Security for sharing

•  Abstraction is useful: pipes, devices, /proc, /afs, etc.

•  so FS-oriented apps work with many kinds of objects

•  You will implement one for JOS!

6



API example -- UNIX/Posix/Linux/xv6/&c:
•  fd = open("x/y", -);

•  write(fd, "abc", 3);

•  link("x/y", "x/z");

•  unlink("x/y");

•  Plan 9 OS (Bell labs)

•  Attempts to structure entire OS as a filesystem 

•  http://plan9.bell-labs.com/plan9/

7



High-level API choices
•  Granularity

•  files, virtual disks, databases

•  File content

•  byte array, records, b-tree (or key-value stores)

•  Organization:

•  name hierarchy vs flat names (object IDs)

•  Synchronization

•  None vs locks, transaction rollbacks

8



API implications:
•  File descriptor (fd) refers to something

•  preserved even if file name changes or deleted

•  File can have multiple links i.e., multiple directories

•  file info should be stored somewhere other than directory

•  Thus a file is independent of its names

•  it is called an "inode"

•  inode must keep link count (tells us when to free)

•  inode must have count of open fds'

•  inode deallocation deferred until last link, fd removed

9



Let us talk about xv6
10



FS software layers
11



On-disk layout

•  Let's discuss each layer

12



Hard disk
13



Disk blocks
•  Most o/s use blocks of multiple sectors

•  e.g. 4 KB blocks = 8 sectors

•  to reduce book-keeping and seek overheads

•  xv6 uses single-sector blocks for simplicity

•  "meta-data"

•  everything on disk other than file content

•  super block, i-nodes, bitmap, directory content

14



Inode
•  On-disk

•  type (free, file, directory, device)

•  nlink

•  size

•  addrs[12+1]

•  Q: Why 12+1 ?

15



Direct and indirect blocks
16



Direct and indirect blocks
•  How to find file's byte 8000?

•  logical block 15 = 8000 / BLOCK_SIZE

•  3rd entry in the indirect block

•  i-node structure

•  each i-node has an i-number

•  easy to turn i-number into inode

•  inode is 64 bytes long

•  byte address on disk: 2*512 + 64*inum

17



Directory contents
•  Directory much like a file

•  but user can't directly write

•  Content is array of dirents

•  Dirent:

•  inum

•  14-byte file name

•  dirent is free if inum is zero

18



Inode operations
•  kernel keeps inode in-memory until reference != 0

•  ialloc() - allocate inode

•  ilock() - and iunlock sync access to inode 

•  iget() - returns the inode struct and inc ref count

•  iput() - dec the ref count and frees is ref = 0

•  iupdate() - copy modified inode to the disk

19



Inode xv6 usage
ip = iget(dev, inum) 
ilock(ip) 
... examine and modify ip−>xxx ... 
iunlock(ip) 
iput(ip)

20



Concurrent calls to ialloc?
•  Will they get the same inode?

•  note bread / write / brelse in ialloc

•  bread locks the block, perhaps waiting, and reads from disk

•  brelse unlocks the block

•  Why do we use iget even after finding an inode?

•  Let's see the iget method

•  Q: Why iget does not hold ilock?

21



Free block bitmap

•  xv6 maintain free bitmap on disk – one bit per block (sb→bmapstart)

•  0 means block is free, 1 means block in use

•  Checking if a block is free if you know block number

•  buf[blockNum/8] & (0x1 << (blockNum % 8))

22



Block allocation sequence
•  balloc() - allocates new disk block

•  readsb() - into to sb struct in memory

•  Iterate over the bitmap blocks for free block

•  If block found, update corresponding bit

•  bfree() - clear the relevant bit

23



Buffer cache layer
•  A double-linked list of buf structures

•  Holding cached copies of disk block contents

•  Two jobs:

•  synchronize access to disk blocks

•  one block on disk – one block in memory

•  one kernel thread at the time use same block

•  Cache popular blocks in fixed buffers

24



Buffer cache layer
•  Flags:

•  B_BUSY – buffer locked

•  B_VALID – buffer has been read from disk

•  B_DIRTY – buffer was modified and should be written to disk

•  Interface:

•  binit() - called by main

•  bread() - to read buffer from block on disk

•  bwrite()- to write buf to disk

•  brelse()- to release buf when done and move it to the head

25



Buffer cache layer
•  Let's look at the block cache in bio.c

•  block cache holds just a few recently-used blocks

•  FS calls bread, which calls bget

•  bget looks to see if block already cached

•  if present and not B_BUSY, return the block

•  if present and B_BUSY, wait

•  if not present, re-use an existing buffer

•  Q: why goto loop after sleep()?

26



Replacement policy
•  xv6 implements LRU for buffer cache replacement.

•  Maintain the buffers in a doubly-linked list.

•  When done accessing a buffer (at the time of clearing the busy bit),

•  move the buffer to the front of the buffer cache list

•  start replacement at the last entry of the list.

•  Let's discuss buffer cache and disk driver interaction

27



Disk driver
•  Let's look into ide.c

•  ideinit() initializes the IDE

•  Q. What does this line mean ioapicenable(IRQ_IDE, ncpu - 1)?

•  Q. Why do we check if disk 1 is present?

28



Disk driver
•  ide_rw() - read or write a block from/to the disk

•  Q: How to handle multiple ide_rw() calss?

•  Notice just one lock (ide_lock) for enforcing multiple invariants

•  iderw and ideintr share the request queue using idelock

•  Q: What if we enable interrupts with single processor?

29



Now, let's look at xv6 in action
•  Focus on disk writes

•  Illustrate on-disk data structures via how updated

30



Q: How does xv6 create a file?
$ echo > a 
write 34 ialloc (from create sysfile.c; mark it non-free) 
write 34 iupdate (from create; initialize nlink &c) 
write 59 writei (from dirlink fs.c, from create)

•  xv6 supports logging which we will discuss next class

•  log_write replaces bwrite()

•  Q: what's in block 32?

•  look at create() in sysfile.c

•  Q: why two writes to block 32?

•  Q: what is in block 59?

31



xv6 Write data to a file
$ echo x > a 
write 58 balloc- (from bmap, from writei) 
write 613 bzero 
write 613 writei (from filewrite file.c) 
write 34 iupdate- (from writei) 
write 613 writei 
write 34 iupdate

•  Q: what's in block 58, block 613?

•  look at writei call to bmap

•  look at bmap call to balloc

32



Delete a file
$ rm a 
write 59 writei (from sys_unlink; directory content) 
write 34 iupdate (from sys_unlink; link count of file) 
write 58 bfree- (from itrunc, from iput) 
write 34 iupdate (from itrunc) 
write 34 iupdate (from iput)

33



Q: How fast xv6 apps. can read big files?
•  First reads data from disk to buffer cache

•  Then, from buffer cache to user space

•  What happens if we pass user buffer to the disk device driver?

•  Q: How much RAM should we dedicate to disk buffers?

34


