Lab1l tutorial - CS 3210

https://tc.gtisc.gatech.edu/cs3210/2016/fall/lab/lab1.html

Lab session general structure

Session A - overview presentation (30 min)
- About concept, tutorial and demo

Session B - group activity (30 min)
- Each student will get his/her hands dirty on tutorials
- We will provide a README and/or source code
- Divide class in three groups
- Note: README 1is only for practice

Session C (20 min)
- Q&A lab

Labl goals

Understanding the tools required for OS development
Part 1 — Git source control and its internals

Part 2 — QEMU and debugging with QEMU

Part 3 — Basics of boot process and JOS makefile

Source control - Git Basics

Why version control?

Basic functionality
- Keep track of changes made to files
- Merge the contributions of multiple developers

Accountability
- Who wrote the code?
- Do we have the rights to it?

Software branches
- Different software versions, ensure bug fixes shared

Record keeping
- Commit logs may tie to 1ssue tracking system or be
used to enforce guidelines

Setting up Git

In this class, we will use Git

Lets walkthrough basic commands and then the
internals

Update your config, one time only
$ git config --global user.name “john.lastname”
$ git config --global user.email john@gatech.edu

Getting started
Course git repo: git://tc.gtisc.gatech.edu/cs3210-lab

mkdir ~/cs3210

cd ~/cs3210

git clone git://tc.gtisc.gatech.edu/cs3210-1ab lab
Cloning into 1lab...

cd lab

T & = B 5=

Committing your changes

$ git add codel.c /* Tells git to track a file */
$ git commit -am 'my solution for labl exercise 9'

$ make tarball LAB=1

Git - distributed version control

Server Computer

Version Database

version 2

version 1

Computer A

Version Database

Version Database

Git internals - blob

* Git1s a DAG (directed acyclic graph) of different type of
objects

* Objects are stored compressed and identified by an SHA-1

* Blob: simplest object, just a bunch of bytes, often a file

Git - distributed snapshots

Checkins over time

Git internals - trees and blobs

Directories are represented by a tree object

They point to blob objects or subtrees

Git internals — blobs and trees

$ find .git/objects -type £

.git/objects/02/b365d4af3£f74b0b1f18c41507c82b3ee571
.git/objects/37/ce98£6635fa1192d843bcaa4622537b2eb87 - Tree
.git/objects/f0/5245cba7£23£998a5e372812d1a390375314c

$ git cat-file -p 37ce98£f6635fal1192d85243bcaa4622537b2eb87

100644 blob 5fe92a0481023dfal3d2e64a0556dda3bbb852e5d init.scm
100644 blob 20fab5el9fcb963f8ad4ff249a815413153fb6bdel opdefines.h
10644 blob 69¢742cc2544e336230d637b8115d69£0c050720 scheme.h
100644 blob badefl7026a45893a7b3174db325e868c3a688b7/ scheme.c

Git internals - commit

Commut refers to a tree that represents the state of the files
at the time of the commit

commit -
- message

parents

98ca%..

Git internals - commit

It also refers to 0..n other commits that are 1ts parents

3dac2..

f30ab..

commit size

commit size

commit size

tree 92ec2

tree lﬁicl

tres Odeiq

authar Seatt

parent SBcad

parent 3dacs

committer | Scott

author Seott

author Seott

inltial commit of sy praject

committer | Scott

commitier | Scott

fined bug #1328 - stock
varFlow under certaln

pdd fegtwre #12 - obility to
(41

odd new formsti to the cemtral

v

'

v

‘ Snapshot A

Snapshot B

Snapshot C

Git internals - commit

A branch 1s a pointer to a commit.

98ca9

master

3dac2

'

Snapshot A

'

f30ab

Snapshot B

l

Snapshot C

Git internals - commit

The files 1n the working directory reflect HEAD

HEALY

ref:

I branchnane |

master Ccomimit Sparents
- MEsSsage

98cald — 3dac? -+ fi0ab t— +filename

Git internals - creating branch

glt checkout testing

master I

'

98cal -— Jdac? i fi0ab I

f

testing

s

Git internals - creating branch

glt commit -m “commit 1s53”

MaSster

l

5553

X86 Assembly

Why x86 assembly?

All labs require understanding of assembly instructions

We need to understand what instructions are executed
during the boot

The book “PC Assembly Language™ 1s an excellent
resource to understand the basics
https://tc.gtisc.gatech.edu/cs3210/2016/refs.html

We will not be covering it today 1n the class

https://tc.gtisc.gatech.edu/cs3210/2016/refs.html

QEMU emulator

PC emulator

* Debugging and modifying real PC boot 1s hard

* So, we use a program that faithfully emulates a PC

* We can track, debug when our kernel boots
* So what does the emulator PC require?

= A working OS!

» [et's discuss the internals

What is QEMU?

* Modes:
" System-mode emulation — emulation of a full system
* User-mode emulation — launch processes compiled for
another CPU(same OS)
* Ex. execute arm/linux program on x86/linux

* Popular uses:
" For cross-compilation development environments

* virtualization, device emulation, for kvim
* Android Emulator(part of SDK)

Dynamic translation

Target CPU instruction — Host CPU instruction

Qemu Binary Translation Process

VM Execution

'

Reach Branch

¢

Cache Lookup =——— Translate BBL
[miss]

*[hit] ‘
Execute Basic Block -ljf———Sms————-- Generate Code
[last_ins] \

translatelnsn(eip);
gip++;

What 1s QEMU?
* QEMU 1s a user-level processor emulator
* Simulation vs. Emulation

* Simulation — for analysis and study

* Emulation — for usage as substitute

Translation and execution

%rbp
%rbx
%ri2
%ri3
%rid

[=4]

Initialize the process or and

jump to the hgst code

%ris

%rdi,%ri4
SOxffffrffffffffb78,%rsp
*%rsi

>
g Oh O O O Ch

Translation Cache

s

Prologue

|
|
| |
| | |
| : :
| H : Code
cpu_exec() - | 5 |
=l |
| Main Loop: o i \ :
| I
@ IRQ handle '- | Epilogue | ._\%:
@ translation \\: | T
@ run guest I | |
$GK488,%rsp
< %ri5s

%ri4
%ri3
%ri2
%rbx
%rbp

restore normal state and
return to the main loop

o Oh

(=,

86
8
8
8
8
8

N O

Building CS3210 kernel for emulator

$ cd lab
$ make

Successtul build generates our CS3210 kernel:
check kern/kernel.img

Next we 1nstall our PC emulator — QEMU:
$ sudo apt-get 1nstall gemu

When done, we can boot our PC:

$ make gemu

Starting QEMU

$ make gemu-gdb

You will see the following printed on the screen

$ gemu-system-1386 -drive file=obj/kern/kernel.img,
index=0,media=disk, format=raw -serial mon:stdio -gdb
tcp::26001 -D gemu.log

We will next discuss
* Boot procedure

* Using QEMU with gdb to understand boot procedure

How does computer startup?

e Booting 1s a bootstrapping process that starts operating
systems when the user turns on a computer system

* A boot sequence 1s the set of operations the performs
when 1t 1s switched on that load an operating system

Understanding OS booting

What is BIOS

BIOS refers to the software code run by a computer
when first powered on

The primary function of BIOS 1s code program
embedded on a chip that recognizes and controls various
devices that make up the computer.

Phocnix - MmrdBIBS CHDS Setap Utility

b Stasdard ONS Features » FrequescyAholtage Contrel
» Advanced BIOS Features Load Fall-Safe Defonits
» Advanced Chipset Featares Load Optinized Defanits
» Integrated Peripherals Set Ssperviser Pessword
» Pouer Masagemest Setsp Set Bser Password

b Pal/PCL Conf lguretions Seve | Exit Setep

IC Nealth Statas Exit Without Sevisg

BIOS on board

BIOS on screen

PC physical address space and BIOS loading

<- OXFFFFFFFF (4GB)

-

depends on

Our emulator PC is 32 bit.

64 bit — beyond 4GB address

amount of RAM

Fom oo +
| 32-bit |
| memory mapped |
| devices |
I |
ININININININININININ
ININININININININININ
I |
| Unused |
I |
Fommm e +
| |
| Extended Memory |
I |
| L
Fommmm e +
| BIOS ROM |
R L LT +
| 16-bit devices, |
| expansion ROMs |
Fommmm e +
| VGA Display |
R +
I |
| Low Memory |
I |
Fommm e +

0x00100000

O0x000FOOBO

0x000C0O000

O0x000AD0O0

0x00000000

(1MB)

(960KB)

(768KB)

(640KB)

Initial PC address in our
emulator OxffffO

Flash vs ROM differences?

Booting sequence - high-level steps first

1. Turning on the computer

2. CPU jumps to address of BIOS (OxFFFFO)
3. BIOS runs POST (Power-On Self Test)

4. Finds a bootable device

5. Loads and executes boot sector form MBR

6. Loads OS

Boot sector

e OS 1s booted from a hard disk, where the master boot
Record (MBR) contains the primary boot loader

 The MBR 1s a 512-byte sector, located 1n the first
sector on the disk (sector 1 of cylinder 0, head 0)

o After the MBR 1is loaded into RAM, the BIOS yields
control to it

Boot loader

* Boot loader 1s a code responsible for loading your
kernel

e In JOS, you can find the boot-loader implementation 1n
boot/main.c

e The boot loader does two important steps:
1. Switches processor from real mode to 32-bit (Why?)

2. Reads the kernel from the hard disk

QEMU generic features?
* Self-modifying code
* Precise exception

* Process state corresponds to sequential execution
when an interrupt occurs

* FPU - software emulation of host FPU
Instructions

* Dynamic translation to native code => speed

How can we debug PC booting?
* GDB i1s the GNU program debugger

* GDB provides some helpful functionality
= Allows you to stop your program at any given point.
" You can examine the program state when stopped.

* Change things in your program, so you can experiment
with correcting the effects of a bug.

* So, let's see a demo for debugging our PC emulator

JOS: Boot loader (main.c and boot.S)

e Both boot.S and main.c correspond as JOS's boot loader
e It should be stored 1n the first sector of the disk

e The 2nd sector onward holds the kernel image

e In JOS source, bootmain() function 1s where 1t all starts

e Function readsect() reads the first sector (boot loader)

Cscope - Walking through the source kernel

e Cscope can be a particularly useful tool if you need to
wade 1nto a large code base

e Fast, targeted searches rather than randomly grepping
through the source files by hand

e To recursively parse a directory, use
$ cscope -R -p X

e X represents the number of levels of subdirectories

Cscope - Walking through the source kernel

Commonly used Cscope options:

e Find this C symbol: (functions or symbols to be
searched)

 Find this global definition: (function definition)

 Find functions called by this function: (callee's of a func)

e Find functions calling this function: (caller's of a func)

 Find this egrep pattern: (search by grepping)

e Find this file: (locate a file)

Getting hands dirty
git clone git://tc.gtisc.gatech.edu/cs3210-pub

cd ¢s3210-pub/tut/tutl

Open README file

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Git - Distributed Version Control
	Slide 10
	Git - Distributed - Snapshots
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Dynamic Translation
	Slide 26
	Translation & Execution
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

