CS3210: Tutorial Session 2

Kyuhong Park-- edited by Kyle Harrigan

Overview

Goal; Understand C and GDB
Partl: C Programming
Part2: GDB

Part3: In-class Exercises

Revised Tutorial Format

Recommended by Dr. Andersen to modify tutorial format after feedback
from first session
Will attempt this modified format

30 minutes lecture

10-20 minutes demo / walkthrough

30 minutes group / individual exercises

Part 1: C Programming Review

Part 1: C Programming Review
Bitwise Operations
Pointers

Review of the prep quiz

Features of C

Few keywords

Structure, unions

Macro preprocessor

Pointers - memory, arrays

External standard library - 1/0, etc..
Lacks (directly)

Exceptions, garbage-collection, OOP, polymorphism

Bitwise Operators in C

& --- bitwise AND

| --- bitwise inclusive OR
* --- bitwise exclusive OR
<< --- left shift

>> ---right shift

~---one's complement(unary)

Bitwise XOR

Input Organized Input Calculations
> =
A=01001011 0 1 0 0 1 0 1 1 0 1 0 0 1
B=11011000 1 1 0 1 1 0 0 0 1 1 0 1 1

Crganized Output Cutput

R

1 0 0 1 0 0 1 1 AXOREBE =10010011

Bitwise shift (left and right)

Bitshift LEFT Input Organized Input

THREE times 01001011 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1

Calculations

0|1|0|0|1|0|1|1_
remove insert 0

C

Organized Output

Output

1|1|0|0‘_ 0|1|0|1|1|0|0|0
insert 0

01011000

™
™
™
O <— O <— &
™
™
C

Bitwise Operations - Example

unsigned getbits(unsigned x, int p, int n)

{

return (x >> (ptl-n)) & ~(~0 << n);

)
Let's say x=3210, p=10, n=4

p+l-n = 10+1-4 =7

1100 1000 1010, >> 7 — 0000 0001 1001

~(~0<<4) - ~(1111 1111 1111) — 0000 0000 1111

0000 0001 1001 & 0000 0000 1111 — 0000 0000 1001 — 9

Pointers

Pointers are variables that contain memory addresses as their values
A variable name directly references a value
A pointer indirectly references a value

Referencing a value through a pointer is called indirection

A pointer variable must be declared before it can be used

10

Concept of address and pointers

Memory can be conceptualized as a linear set of data locations
Variables reference the contents of these locations

Pointers have a value of the address of a given location

11

12

How to read a declaration

3.p is a pointer variable to an integer const int* p;

4. p is a pointer variable to a constant integer const int” p;

Example (1)

int main(){
int nl = 5;
int n2 = 10;
swap(&nl, &n2);
return 0;

What should swap() look like?

13

Example (1) - Answer and Result

int swap(int* pnuml, int* pnum2){
int tmp;
tmp = *pnuml;
*pnuml = *pnum?2;
*pnum2 = tmp;

| L
Swa Swa
P pnum2 492 P pnum2 492
N[o =)| [v
main main
s [0 s[5

Program Stack: Before Program Stack: After

Function pointer declaration

parameters

!

void (*foo)();

Returntype Function pointer’s
variable name

// Example
int (*fl1)(double); // passed a double, returns an int
void (*f2)(char¥*); // passed a pointer to char and returns void

15

Example (2)

int add(int numl, int num2){
return numl + num?2;

int subtract(int numl, int num2){
return numl - num2;

int (*fptrOperation)(int,int);

int compute(fptrOperation op, int numl, int num2){
return op(numl, num2);

3

//usage

printf(“%d\n”, compute(add,5,6);

printf(“%d\n”, compute(sub,5,6);

16

Part 2: GDB

Introduction of GDB
How GDB works
How GDB interact with QEMU

17

Introduction to GDB

GDB is the GNU program debugger

GDB allows you
set a breakpoint in your program at any given point
examine the program state when stopped

change things in your program

18

GDB structure

User interface
Several actual interfaces, plus supporting code
Symbol side
Object file readers, debugging info interpreters, symbol table
management, etc.
Target side
Execution control, stack frame analysis, and physical target

manipulation

19

GDB debugger

Kernel support
Debugger support has to be part of the OS kernel
Kernel able to read and write memory that belongs to each and
every process
Debugger-debuggee synchronization
Signal
Hardware Breakpoint -Built-in debugging feature

Software Breakpoint

20

GDB interaction with OEMU

JOS

QEMU

Remote access
: -

gdb(Debugger)

Example: make gemu-gdb

Open ¢s3210-lab/lab/Makefile
.gdbinit

target remote localhost:26000

Basic commands of GDB

run/r/rargl arg2 arg3
Start program execution from the beginning of the program
continue / ¢
Continue execution to next break point
Kill
Stop program execution
quit/q
Exit gdb

23

GDB: break execution

break function-name/line-#/ClassName: :functionName
break filename:function/filename:line-#

break *address

break line-# if condition

clear function/line-#

delete br-#

enable br-#

disable br-#

24

GDB: line and instruction execution

step/s/si/s#/si#
Step into
next/n/ni/n#/ni#
Do not enter functions (step over)
Until / until line-#
Continue processing until you reach a specified line number
Where
Show current line number and which function you are in

Disassemble Ox[start] Ox[end]

25

GDB: examine variables

x Oxaddress
x/nfu Oxaddress
print variable-name
p/x,p/d,p/u,p/o
Hex, signed integer, unsigned integer, octal
p/t variable , x/b address
Binary
p/a , X/w

Hex address, 4 bytes of memory pointed by address

26

Part3: In-class exercises

git clone git://tc.gtisc.gatech.edu/cs3210-pub
or
git pull in your cs3210-pub directory

cd cs3210-pub/tut/tut?2

Open README and follow all the steps

Have a fun :-)

27

