
CS3210: Tutorial Session 2

Kyuhong Park-- edited by Kyle Harrigan

1

Overview
• Goal: Understand C and GDB

• Part1: C Programming

• Part2: GDB

• Part3: In-class Exercises

2

Revised Tutorial Format
• Recommended by Dr. Andersen to modify tutorial format after feedback

from first session

• Will attempt this modified format

• 30 minutes lecture

• 10-20 minutes demo / walkthrough

• 30 minutes group / individual exercises

3

Part 1: C Programming Review
• Part 1: C Programming Review

• Bitwise Operations

• Pointers

• Review of the prep quiz

4

Features of C
• Few keywords

• Structure, unions

• Macro preprocessor

• Pointers - memory, arrays

• External standard library - I/O, etc..

• Lacks (directly)

• Exceptions, garbage-collection, OOP, polymorphism

5

Bitwise Operators in C
• & --- bitwise AND

• | --- bitwise inclusive OR

• ^ --- bitwise exclusive OR

• << --- left shift

• >> --- right shift

• ~ --- one's complement(unary)

6

Bitwise XOR
7

Bitwise shift (left and right)
8

Bitwise Operations - Example
 unsigned getbits(unsigned x, int p, int n)
 {
 return (x >> (p+1-n)) & ~(~0 << n);
 }

• Let's say x=3210, p=10, n=4

p+1-n → 10+1-4 = 7

1100 1000 1010 >> 7 → 0000 0001 1001

~(~0 << 4) → ~(1111 1111 1111) → 0000 0000 1111

0000 0001 1001 & 0000 0000 1111 → 0000 0000 1001 → 9

2

9

Pointers
• Pointers are variables that contain memory addresses as their values

• A variable name directly references a value

• A pointer indirectly references a value

• Referencing a value through a pointer is called indirection

• A pointer variable must be declared before it can be used

10

Concept of address and pointers
• Memory can be conceptualized as a linear set of data locations

• Variables reference the contents of these locations

• Pointers have a value of the address of a given location

11

How to read a declaration
Definition Code

1. p is a variable const int* p;

2. p is a pointer variable const int* p;

3. p is a pointer variable to an integer const int* p;

4. p is a pointer variable to a constant integer const int* p;

12

Example (1)
int main(){
 int n1 = 5;
 int n2 = 10;
 swap(&n1, &n2);
 return 0;
}

What should swap() look like?

13

Example (1) - Answer and Result
int swap(int* pnum1, int* pnum2){
 int tmp;
 tmp = *pnum1;
 *pnum1 = *pnum2;
 *pnum2 = tmp;
}

14

Function pointer declaration

// Example
int (*f1)(double); // passed a double, returns an int
void (*f2)(char*); // passed a pointer to char and returns void

15

Example (2)
int add(int num1, int num2){
 return num1 + num2;
}
int subtract(int num1, int num2){
 return num1 – num2;
}
int (*fptrOperation)(int,int);
int compute(fptrOperation op, int num1, int num2){
 return op(num1, num2);
}
//usage
printf(“%d\n”, compute(add,5,6);
printf(“%d\n”, compute(sub,5,6);

16

Part 2: GDB
• Introduction of GDB

• How GDB works

• How GDB interact with QEMU

17

Introduction to GDB
• GDB is the GNU program debugger

• GDB allows you

• set a breakpoint in your program at any given point

• examine the program state when stopped

• change things in your program

18

GDB structure
• User interface

• Several actual interfaces, plus supporting code

• Symbol side

• Object file readers, debugging info interpreters, symbol table

management, etc.

• Target side

• Execution control, stack frame analysis, and physical target

manipulation

19

GDB debugger
• Kernel support

• Debugger support has to be part of the OS kernel

• Kernel able to read and write memory that belongs to each and

every process

• Debugger-debuggee synchronization

• Signal

• Hardware Breakpoint -Built-in debugging feature

• Software Breakpoint

20

GDB interaction with QEMU
21

Example: make qemu-gdb
• Open cs3210-lab/lab/Makefile

• .gdbinit

• target remote localhost:26000

22

Basic commands of GDB
• run / r / r arg1 arg2 arg3

• Start program execution from the beginning of the program

• continue / c

• Continue execution to next break point

• Kill

• Stop program execution

• quit / q

• Exit gdb

23

GDB: break execution
 break function-name/line-#/ClassName::functionName
 break filename:function/filename:line-#
 break *address
 break line-# if condition
 clear function/line-#
 delete br-#
 enable br-#
 disable br-#

24

GDB: line and instruction execution
• step / s / si / s # / si #

• Step into

• next / n / ni / n # / ni #

• Do not enter functions (step over)

• Until / until line-#

• Continue processing until you reach a specified line number

• Where

• Show current line number and which function you are in

• Disassemble 0x[start] 0x[end]

25

GDB: examine variables
• x 0xaddress

• x/nfu 0xaddress

• print variable-name

• p/x , p/d , p/u , p/o

• Hex, signed integer, unsigned integer, octal

• p/t variable , x/b address

• Binary

• p/a , x/w

• Hex address, 4 bytes of memory pointed by address

26

Part3: In-class exercises
git clone git://tc.gtisc.gatech.edu/cs3210-pub

or

git pull in your cs3210-pub directory

cd cs3210-pub/tut/tut2

• Open README and follow all the steps

• Have a fun :-)

27

