
ASLR & DEP
DAVID HEAVERN

Problem Statement
•Security Issues
• Buffer Overflows
• Buffer overflows are the source of many of the common vulnerabilities in modern software

• Caused by not checking the source length when writing to a buffer

• Smashing the stack
• Overruns on the stack start overwriting data higher up in the stack

• Overwriting the EIP can allow an attacker to hijack the program flow on a functions return to execute malicious code

• Shellcode Injection
• EIP could be redirected to the stack itself where the attacker has written malicious machine code and this code will be executed

Idea
JOS ASLR – Address space layout randomization
◦ Randomizes the memory space locations upon program execution

◦ Locations of the stack, heap, and shared libraries are less predictable

◦ Makes hijacking the EIP less dangerous by lowering odds of success

JOS DEP – Data Execution Prevention
◦ Prohibits parts of memory that hold data from being executed

◦ Marks pages like the stack and the heap unexecutable

◦ Prevents shellcode injection in the stack or the heap to prevent malicious code execution

Demo Plan
Attack Mitigation Scenarios
◦ Highlight vulnerable aspects of common programming idioms

◦ Exhibit different types of attacks on vulnerable systems without ASLR or DEP

◦ Step through the attack with ASLR and DEP and show how attacks are mitigated

◦ Discuss other security vulnerabilities that are still possible

Timeline
March 28th - April 1st

◦ Research alternatives and Evaluation

April 4th – April 8th

◦ ASLR Implementation

April 11th – April 13th

◦ DEP Implementation

April 13th – End of Semester
◦ Demo preparation

◦ Extra time?
◦ Shared library support

386 Emulator
Stephan Williams

Problem Statement
● Implement a simple 80386 emulator in Rust sufficient to boot JOS.

Idea
● Need to implement:

○ Barebones BIOS

○ Real and Protected mode

○ Subset of 16- and 32-bit assembly (as determined by examining compiler output)

○ Disk and Display I/O

○ Virtual Memory

● Maybe:

○ Segmentation

○ Memory Protection

○ Keyboard I/O

● Stretch goals:

○ Interrupts

Demo Plan
● Be able to boot JOS at least to the point where it can display the initial prompt

Timeline
● Week 1:

○ Basic program architecture

○ Some sort of BIOS

○ Disk I/O

○ Implement instructions as needed

● Week 2:

○ More instructions

○ Virtual Memory

● Week 3:

○ More Instructions

○ Display I/O

Linux Kernel Module
Driver for Keyboard LEDs

Bridging the Gap Between the Kernel Space and the
User Space:

Connor Reeder

Problem Statement:
The driver which Linux currently uses to activate and deactivate the Caps Lock
and Num Lock LED lights on a Toshiba Satellite C55-A5286 currently does not
allow for control from user space applications. The functionality of those two lights
is bound to the standard functions of Caps Lock mode and Num Lock mode,
respectively. Thus, there is no way to repurpose the lights to serve other functions
in the event that the user does not use those lights for their current function.

Idea
● Write a Linux kernel module which containing a driver for the Toshiba Satellite

C55-A5286 keyboard LED lights which will replace the one currently in use.
● The driver will mount each of the two LED lights as a linux special file node in

the /dev directory so as to allow any user space application to read and write
to it like any other device.

● It will be mounted as a character device, thus requiring applications to read
and write to it in block-aligned sizes.

● Create a simple user space program which will use the caps lock light as a
notification for some type of event.

Demo Plan
● Break down the procedure that was used to develop the linux kernel module,

the risks that were involved, and what exactly it does to carry out its task.
● Show how the interface works between the kernel space module and the user

space application, including the device files /dev/capslight and /dev/numlight,
and the Linux commands necessary to develop, install, or remove a module.

● I will demonstrate lighting with echo {0,1} > {/dev/capslight,/dev/numlight} and
reading with cat {/dev/capslight,/dev/numlight} in a bash script that blinks a
light when any terminal command fails.

● Present the documentation or specifications that were researched in order to
understand the specifics of how to control the LED lights built into the Toshiba
Satellite C55-A5286.

Timeline

Project Proposal

Demo Day

Com
ple

te
Res

ea
rch

Final Submission

Crea
te

Firs
t M

od
ule

/Lo
ad

 it

Beg
in

Work
 on

 D
riv

er

Disa
ble

/R
em

ov
e O

rig
ina

l D
riv

er

Turn
 Li

gh
ts

On/O
ff

Crea
te

Dev
ice

 File

Crea
te

Use
r P

rog
ram

April 1st April 4th April 5th April 7th April 11th April 16th

Transactional Synchronization
Extensions in JOS

Robby Guthrie

What is Transactional Memory?
Alternative to software locks

Sequences of loads and stores to memory are committed in an atomic transaction

Allows parallel access to data structures provided the same memory regions are not

accessed

Ex. Concurrent Hash Maps

What is Intel TSX?
Set of instructions to support memory transactions starting in Haswell

microarchitecture

XBEGIN, XEND mark beginning and end of transaction regions

Intel hardware monitors for multiple threads of control for conflicts

A conflict is two threads accessing memory in the same cache line

Plans for using Intel TSX in JOS
A fork of QEMU provides TSX support: http://www.cs.berkeley.edu/~sltu/papers/tsx.

pdf

My goal: replace locking mechanisms in JOS with transactional memory where

appropriate

1.) Set up facilities to benchmark the JOS kernel

2.) Replace the global kernel lock with fine-grained access

3.) Compute the speedup of JOS with TSX vs. primitive locking mechanisms

http://www.cs.berkeley.edu/~sltu/papers/tsx.pdf
http://www.cs.berkeley.edu/~sltu/papers/tsx.pdf
http://www.cs.berkeley.edu/~sltu/papers/tsx.pdf

Potential Problems
Benchmarking on a simulator will likely be inaccurate, especially if TSX is performed

in software

Discovering regions of JOS code where TSX is likely to provide speedup. A lot of

global data structures are linked lists which don’t support random access.

Timeline
Over Spring Break: Have JOS running in QEMU+TSX

First two weeks of April: Have facilities for benchmarking JOS kernel code in place

Final: Speed up JOS with TSX as much as possible.

Implement	 ASLR	
Jiateng	 Xie

Problem	 Statement
1.  Buffer	 overflow	 is	 one	 of	 the	 most	

commonly	 seen	 aCacks.	 To	
protect	 the	 system	 against	 it,	
ASLR	 (address	 space	 layout	
randomizaJon)	 is	 used.	

2.  Basically,	 it	 happens	 when	 a	
program,	 while	 wriJng	 data	 to	 a	
buffer,	 overruns	 the	 buffer’s	
boundary	 and	 overwrites	 adjacent	
memory	 locaJons.	

Problem	 Statement	
•  voidhello()	
•  {	
•  charvul1[8]="This";	
•  charvul2[8];	
•  gets(vul2);	
•  prinV("vul1:%s\nvul2:%s\n",vul1,vul2);	
•  }	

•  The	 program	 is	 vulnerable	 because	 the	 the	
input	 vu[2]	 may	 be	 larger	 than	 8	 bytes	 and	
overwrite	 previous	 memory	 locaJons.	

•  ACackers	 may	 also	 transfer	 the	 control	 of	 the	
program	 by	 inserJng	 well-‐wriCen	 shellcode,	
e.g.,	 ret2libc	 aCack.

Idea

•  To	 prevent	 aCackers	 from	 jumping	 to	 specific	
parts	 of	 memory	 by	 overflowing	 buffers,	 the	
soluJon	 is	 to	 arrange	 the	 address	 space	 of	 key	
data	 areas	 randomly,	 so	 that	 the	 aCacker	
can’t	 do	 it	 reliably.

Demo	 Plan

•  To	 show	 that	 a	 well-‐cra^ed	 buffer	 overflow	
aCack	 will	 work	 when	 ASLR	 is	 turned	 off,	 and	
it	 will	 not	 work	 when	 it	 is	 turned	 on.	 And	 also	
show	 that	 the	 address	 space	 of	 the	 process	 is	
arranged	 randomly	 by	 prinJng	 out	 the	
addresses.

Timeline

•  One	 member	 team,	 so	 I	 will	 try	 my	 best	 to	 get	
the	 previously	 menJoned	 funcJonality	 to	
work	 before	 the	 deadline.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CS 3210 Project Proposal
Porting JOS to 64-bit

Saikrishna Arcot

March 16, 2016

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background

• Taken CS 2200 (Systems and Networks) and CS 4290
(Advanced Computer Architecture)

• Aware of some of the memory differences between 32-bit and
64-bit architectures

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Background

• Taken CS 2200 (Systems and Networks) and CS 4290
(Advanced Computer Architecture)

• Aware of some of the memory differences between 32-bit and
64-bit architectures

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proposal

Port JOS to run as a 64-bit kernel on a x86-64 CPU

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Goals

• Compile JOS as a 64-bit kernel

• Run JOS on a x86-64 CPU

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Goals

• Compile JOS as a 64-bit kernel
• Run JOS on a x86-64 CPU

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stretch Goals

• Be able to compile the kernel in both 32-bit and 64-bit mode

• Add/verify support for using more than 4 GB of memory

• The previous steps should allow for using/accessing more than
4 GB of virtual memory, but having more than 4 GB of
physical memory might need some work.

• Current BIOS code appears to support only up to 64 MB of
memory, even though more is provided by QEMU.

• Anything else I can think of or is suggested

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stretch Goals

• Be able to compile the kernel in both 32-bit and 64-bit mode
• Add/verify support for using more than 4 GB of memory

• The previous steps should allow for using/accessing more than
4 GB of virtual memory, but having more than 4 GB of
physical memory might need some work.

• Current BIOS code appears to support only up to 64 MB of
memory, even though more is provided by QEMU.

• Anything else I can think of or is suggested

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stretch Goals

• Be able to compile the kernel in both 32-bit and 64-bit mode
• Add/verify support for using more than 4 GB of memory

• The previous steps should allow for using/accessing more than
4 GB of virtual memory, but having more than 4 GB of
physical memory might need some work.

• Current BIOS code appears to support only up to 64 MB of
memory, even though more is provided by QEMU.

• Anything else I can think of or is suggested

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stretch Goals

• Be able to compile the kernel in both 32-bit and 64-bit mode
• Add/verify support for using more than 4 GB of memory

• The previous steps should allow for using/accessing more than
4 GB of virtual memory, but having more than 4 GB of
physical memory might need some work.

• Current BIOS code appears to support only up to 64 MB of
memory, even though more is provided by QEMU.

• Anything else I can think of or is suggested

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stretch Goals

• Be able to compile the kernel in both 32-bit and 64-bit mode
• Add/verify support for using more than 4 GB of memory

• The previous steps should allow for using/accessing more than
4 GB of virtual memory, but having more than 4 GB of
physical memory might need some work.

• Current BIOS code appears to support only up to 64 MB of
memory, even though more is provided by QEMU.

• Anything else I can think of or is suggested

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Demo

• Demonstrate that the JOS kernel boots up as a 64-bit kernel

• Demonstrate user programs run correctly
• Demonstrate that the kernel can still be compiled and run as

a 32-bit kernel (if stretch goal is met)
• Demonstrate that more than 4 GB of physical memory can be

used (if stretch goal is met)

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Demo

• Demonstrate that the JOS kernel boots up as a 64-bit kernel
• Demonstrate user programs run correctly

• Demonstrate that the kernel can still be compiled and run as
a 32-bit kernel (if stretch goal is met)

• Demonstrate that more than 4 GB of physical memory can be
used (if stretch goal is met)

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Demo

• Demonstrate that the JOS kernel boots up as a 64-bit kernel
• Demonstrate user programs run correctly
• Demonstrate that the kernel can still be compiled and run as

a 32-bit kernel (if stretch goal is met)

• Demonstrate that more than 4 GB of physical memory can be
used (if stretch goal is met)

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Demo

• Demonstrate that the JOS kernel boots up as a 64-bit kernel
• Demonstrate user programs run correctly
• Demonstrate that the kernel can still be compiled and run as

a 32-bit kernel (if stretch goal is met)
• Demonstrate that more than 4 GB of physical memory can be

used (if stretch goal is met)

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Timeline

1. Research what changes are necessary at the bootloader level
to support a 64-bit kernel (about 2-3 days)

2. Make changes to the assembly files for loading and starting
the kernel (about 3 days)

3. Make changes to C files related to virtual addresses (about 2
days)

7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Timeline

1. Research what changes are necessary at the bootloader level
to support a 64-bit kernel (about 2-3 days)

2. Make changes to the assembly files for loading and starting
the kernel (about 3 days)

3. Make changes to C files related to virtual addresses (about 2
days)

7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Timeline

1. Research what changes are necessary at the bootloader level
to support a 64-bit kernel (about 2-3 days)

2. Make changes to the assembly files for loading and starting
the kernel (about 3 days)

3. Make changes to C files related to virtual addresses (about 2
days)

7

Time	Sensitive	Scheduling	
By	Brian	Surber	and	Darrington	Altenbern	

Problem	Statement	

Ê  Modern	applications	often	have	processes	with	realtime	
deadlines	

Ê  This	spans	processes	from	audio/video	encoding	to	control	
inputs	on	a	plane.	

Ê  Without	specific	actions	by	the	scheduler,	these	processes	
can	miss	their	deadlines	in	favor	of	fairness	towards	less	
sensitive	processes.	

Idea	

Ê  The	idea	is	to	implement	a	time	sensitive	scheduler.	This	means	
adding	to	process	structs	to	tell	the	scheduler	about	deadlines	and	
expected	execution	times.	

Ê  The	goal	is	to	minimize	deadline	misses	instead	of	maximizing	
fairness	for	all	processes.	

Ê  The	scheduler	itself	would	still	operate	with	a	priority-based	round	
robin	algorithm,	but	would	make	exceptions	for	processes	that	
could	potentially	miss	their	deadlines	if	not	given	resources.	

Ê  A	separate	process	would	be	executing	in	the	background	of	the	
OS,	predicting	the	need	to	give	resources	to	the	time	sensitive	
processes	over	standard	processes.	

Idea	cont.	

Ê  The	background	process	could	predict	deadline	misses	multiple	
steps	ahead	and	begin	special	resource	allocation	early.	

Ê  Priority	would	be	dynamically	set	for	processes	that	need	the	
resources	and	be	used	to	set	order	of	executing	without	damaging	
the	round-robin	scheduling.	

Ê  Expected	execution	times	(saved	in	the	process	structs)	can	be	
dynamically	adjusted	based	on	feedback	from	the	completed	
processes.	

Ê  When	choosing	between	multiple	time	sensitive	processes,	
multiple	algorithms	will	be	tested:	probably	shortest-first	or	first-in-
first-out.	

Demo	Plan	

Ê  The	metric	to	be	analyzed	for	each	selection	algorithm	is	
deadline	hit/miss	ratios.	

Ê  This	can	be	simulated	with	various	benchmark	tests	where	
each	time-sensitive	process	can	add	to	a	miss	or	a	hit	counter	
based	on	its	success.	

Ê  Comparisons	will	be	done	between	our	existing	JOS	
scheduler,	a	time-sensitive	scheduler	using	FIFO	to	
determine	high	priority	process	order,	and	a	time-sensitive	
scheduler	using	SF	to	determine	process	order.	

Timeline	

Ê  The	main	focus	will	be	on	implementation	of	at	least	one	of	
the	time-sensitive	scheduling	algorithms	(SF	or	FIFO).	

Ê  After	at	least	one	is	implemented,	the	group	can	choose	to	
implement	another	or	move	onto	developing	benchmarks.	

Ê  If	extra	time	is	available,	additional	benchmarks	can	be	
created	to	simulate	edge	cases	or	high	stress	situations.		
Ê  i.e.	very	short	execution	time	processes	adding	to	scheduler	

overhead	

Extending JOS to include
Networking Capabilities

By:

Zain Rehmani

Adithya Nott

Problem Statement: What is this project about?
● Implementing network support in JOS

○ transmitting/receiving packets

● Expanding on initial network driver support in Lab 6 in more interesting ways via

challenge problems and/or DSM

Why is adding a network driver to JOS helpful?
● The world is more connected than ever

● Interaction with other devices like routers is present in modern Operating Systems

● Without networking drivers, good luck accessing the Internet.

● Solid opportunity to explore the Application and Transport Layers of Networking.

● To extend the capabilities of JOS as far (and farther) as the MIT 6.828 curriculum

prescribed

Distributed Shared Memory
● Distributed Shared Memory (DSM) system that applies the networking drivers by

connecting multiple computers together to share memory

○ Separated physical memory all treated as one address space

● Page faults handled across a network of computers

● Applies multiple concepts: Networking, Multi-threading, Paging

Plan + Timeline
● Finish core Lab 6 a week before Lab 5 is due. (April 4)

● As Lab 6 is being finished, determine direction based on feasibility (complete at

least two things by April 11)

○ Challenge problems already proposed in Lab 6

■ "Add a simple chat server to JOS, where multiple people can connect to the server and

anything that any user types is transmitted to the other users…"

○ Distributed Shared Memory (DSM) between two computers

■ Use sockets to communicate between computers for DSM

● DSM initialization process is considered part of this.

■ mprotect()

■ DSM Page fault handler function

■ Implement threading library for DSM

● This is a stretch goal; using pthreads instead until this is attempted

Demo Plan
● Show that all the default checks pass with ./grade-lab6

● Demo any finished functionality (DSM paging interactions, web chat interface,

etc.) between two laptops simultaneously running JOS.

○ If DSM functionality hasn’t reached this level, between two processes run on one laptop.

Any Questions, Comments, or Suggestions?

JOS : GUI
JESSE LEE

YEONJOON CHOI

Problem Statement
● JOS environment lacks Graphical User Interface. In the modern operating system,

graphical user interface is one of the main component that differentiate Operating

systems. Therefore, window manager is a crucial component of the operating

system that we need to know how to design.

Idea
1. Implement a simple GUI for JOS that has the following functionalities /

components

a. Components

i. Mouse {1}

ii. Window {2}

b. Functionalities

i. Shutdown {3}

ii. Restart {4}

iii. Access Terminal {5}

*priorities are denoted inside {}

Demo Plan
● “Make qemu” will call the GUI of the JOS kernel

● The interface will have the following features

○ Implementation of Mouse Events (Click, Visible mouse pointer)

○ Shutting down with 1-click

○ Access to the kernel

Timeline
1. Understand the xv6-public code

2. Start implementation on init.c to boot our GUI from the JOS kernel

3. Draw one pixel to the JOS window

4. Draw cursor

5. Draw the window

6. Get “onclick” function working (mouse_events)

PAGING TO DISK
Sneh Munshi
Bhavani Jaladanki

Problem Statement
• Problem: Virtual memory space is limited!

• Solution:
•  Page Swapping:

•  Program will be able to use any page it wants regardless of whether the
page is already in memory or not.

•  Swapping should replace a page in memory that will not be used in the
near future, with the page in the disk that the program wants.

• Goal: make sure that the page switched out is one that is

rarely used since permanent storage is slower than
memory

Idea (Part 1)
• Paging Server (Component 1):

•  Server (instead of disk)
•  Server will take in 3 IPCs: page in, page out, and delete page
•  Page Out:

•  Server will get IPC that specifies which page needs to be sent out from
memory into the disk

•  Using bitmap, find empty block on hard drive and write page’s contents to
block.

•  20-bit index of the disk block that the page was written to will be sent out
within an IPC

•  Page In:
•  server will take the 20-bit index given to it to read the page from the disk into

the memory
•  page will be shared to environment that asked for the page
•  block on the disk will be freed using the bitmap.

•  Discard Page:
•  block on the disk will just be freed using the bitmap

Idea (Part 2)
• Paging Library (Component 2):

•  Using exo-kernel style library:
•  Make sure that paging done in a proper way
•  Page-faults that arise from trying to access a page that has been

swapped out is also properly handled by syscalls
•  Some syscalls are:

•  sys_page_map: maps page, but if mapping a page that’s paged to disk, bring back into
memory, and if we want to map over a page that is paged to disk, the IPC of delete
page is sent.

•  sys_page_unmap: same as sys_page_map, except unmaps isntead
•  sys_page_alloc: returns –E_NO_MEM when no more memory to allocate page, so

paging starts (pages go out to disk in order to make more memory space)

Demo Plan
• We will hopefully handle all the test cases to make paging

work, and we will present these test cases in class
• Some test cases might include:

•  Page in: handling page fault for accessing page on disk (so bring
the page in successfully to memory)

•  Page out: swap a page in memory back to disk

• Actual Demo Steps:
•  Pick a program that requires a lot of memory space
•  Show that the program cannot run on JOS because it will

eventually run out of memory in trying to hold all the pages it needs
•  Then show that the program can run on our modified OS since

page swapping is a feature that will make sure the program has all
its required pages.

Timeline
•  There are two major components to this project: the

paging library and paging server
• We have 5 weeks until the demo

Evaluation
• Efficiency:

•  We will check to see that there is not a very high rate of page outs
and page ins (check ratio of page ins to page outs). Basically, make
sure that the number of disk accesses can be as low as possible.

• Productiveness:
•  Say a program allocated lots of pages. Then, a small program

should not have to keep swapping pages if it needs to allocate
memory even though it’s a small program.

Ning Wang
David Benas

Zongwan Cao

CS 3210: Final Project
Remote Procedure Call

Problem Statement
● Socket Interface is hard to use

○ Procedure call is a well understood mechanism

○ The JOS kernel can be extended to support remote procedure call (RPC)

○ It provides a very useful paradigm for communication across network

○ It also makes it easier to build distributed systems

● But...Currently JOS does not have network support
○ No self respecting OS should go without a network stack

○ We need to build a network driver before implementing RPC

Part I: Network Driver
● QEMU has support for virtual network

○ It simulates E1000 network interface card

○ We need to write a driver for E1000

● We also need a network stack
○ Write a TCP/IP protocol stack from scratch is hard work

○ We use lwIP, a lightweight protocol stack suite

○ It runs in user space and implement a BSD socket interface

Part I Architecture

Part II: RPC
● Two ways to implement RPC

○ We can build on top of the socket interface or directly talk to kernel network buffer

○ We need to write the stub code for both client and server to hide the network

○ We also need to write the actual client and server code to transmit the packets

● Potential issues
○ How to design the interfaces

○ What is the semantics in terms of communication failures

○ How to marshal arguments into network packets

○ How to reduce the communication overhead

Demo Plan
● Part I demo:

○ Show the functional test cases and underlying architecture of the Lab 6 code.

○ Demonstrate what was added to JOS and how it contributes to our solution of the
problem statement.

● Part II demo:
○ There are two potential ways to demonstrate RPC

■ Write a chat server using the RPC library and demonstrate it

■ Write a distributed key-value store using the RPC library and demonstrate it

Timeline
Week of: March

14
March

21
March

28
April

4
April 11 April

18

Proposal

Spring Break
& Initial research

Lab 6 &
Prerequisite lab(s)

RPC Implement &
Proof of Concepts

Debugging & Just-
In-Case Time

Final Deliverable
Creation

Q & A

Porting JOS to the ARM
architecture

CS 3210 Final Project Spring 2016

Problem Statement
- This project aims to implement basic functionality of JOS on the Raspberry Pi

using the ARM ISA
- Motivation

- New ISA to learn, used in mobile/embedded systems
- Understand what makes an OS portable

ARM ISA - Background
- RISC
- Operating modes = { User, FIQ, IRQ, Supervisor/System, Abort, Undefined }
- All instructions conditionally executable
- Pipeline (5-stage)
- Full descending stack (Stack grows down, SP is lowest occupied location)
- Registers = 30 general purpose, 1 PC, 6 “Program Status” registers
- Registers allocated by mode: Mode A implies Mode B-F “banked” (saved)

Hardware challenge
- We will try to boot JOS on a Raspberry Pi 1 Model B, which features a
Broadcom 2835 SoC.

- The hard part is going to be loading the kernel into memory. The BIOS is
proprietary but it does the job of loading the bootloader.

- In the end if we succeed we will demo the Rpi through a projector. Perhaps
some other interesting things like memory-mapped I/O.

Project - Goals/Demo Plan
Lab 1, 2, 3 Goals

- Show JOS booting to monitor
- Memory initialization functions using ARM’s view of memory - show memory

tests succeeding
- Show interrupts and tests for user environments succeeding

Lab 4 +

- Multiprocessing support

Project - Timeline
Prerequisites

- Cross-compilation environment
- Reading

Lab 1, 2, 3 Goals

- Bootloader (~1 week)
- Memory management (~½ week)
- User environments/interrupts (~½ week)

Lab 4 +

- Reach goal

Proposal: Intel 8086 Emulator

By: Daniel Engel
Erick Lin

Thomas Shields

Problem Statement

● To emulate the core functionality of the Intel
8086 processor and have it run legacy
software such as DOS programs

Intel 8086 Description

● Little-endian

● No virtual memory

● Uses segmented memory – segments are 16 bits and physical
addresses are 20 bits

● The data bus size and registers are 16 bits but memory is byte-
addressable

● The CPU architecture is divided into an execution unit (EU) and
a bus interface unit (BIU)

● Dedicated locations in memory for processing system
interrupts and RESET function

Segmented Memory

EU and BIU

● EU and BIU have separate instruction pipelines
which communicate with one another

● EU wait mode caused by branches, memory
accesses, and instructions that require many
clock cycles

Timeline

● Implement memory, registers, and the CPU
with simple instruction pipelining

● Write parser and assembler for 8086 assembly
to DOS executable formats (e.g. COM, MZ)

● Emulate the hard disk and system interrupts
(Priority Interrupt Management Controller)

● Support graphics

● Support audio if enough time

Demo Plan

● Ideally, we would be able to show some
examples of legacy software being run on our
emulator.

Questions?

 Daniel Carnauba, Nicolette Fink, Thomas Coe

Final Project Proposal
Extending JOS by

Implementing mmap()

Problem Statement

★ read() and write() can be inefficient for non-sequential file access

○ Lots of system call overhead (seeking)

★ Multiple processes accessing the same file can be inefficient

○ Each process reads the file into a buffer in its individual

memory space

★ Context switching can be costly when making many kernel calls

for reading or writing files

Implementation Idea: mmap() and munmap()

void *mmap(void *addr, size_t length, int prot, int flags,
 int fd, off_t offset);

 mmap() creates a new mapping in the virtual address space of the
 calling process.

int munmap(void *addr, size_t length);

 The munmap() system call deletes the mappings for the specified
 address range, and causes further references to addresses within the
 range to generate invalid memory references.

Implementation Idea: Mapping Modes

MAP_SHARED
 Share this mapping. Updates to the mapping are visible to
 other processes that map this file, and are carried through to
 the underlying file.

MAP_PRIVATE
 Create a private copy-on-write mapping. Updates to the
 mapping are not visible to other processes mapping the same
 file, and are not carried through to the underlying file. It
 is unspecified whether changes made to the file after the
 mmap() call are visible in the mapped region.

Mapping Example

Implementation Benefits

mmap()

Utilizes OS Swapping

Interprocess
Communication

No Seeking System
Calls

Less Memory Usage

Non-sequential File
Access

Less System Call
Overhead

★ Benchmark mmap() vs. read()/write()
★ Create benchmark tests using a file searching application

★ For MAP_PRIVATE, compare:
○ Number of system calls made
○ Time spent running the tests

★ For MAP_SHARED, compare:
○ Memory overhead

Demo Plan

Timeline

Spring Break Mar 22-Apr 2 Apr 3-Apr 9 Apr 10-Apr 16

Final Design
&

Implementation
Implementation

Debugging
&

Final Touches

Research
&

Initial Design

Suggestions?

ASLR
Brandon Jackson | Elliott Childre

Problem

Vulnerabilities such as a buffer-overflow allows an attacker to change the flow
of execution to a memory address of their choosing.

The memory address space is predictable, making it easier for an attacker to
jump to the location they want.

The attacker can jump to code that was injected into memory or an already
existing shared library (libc).

Problem
[20:33:29]-ubuntu-(~) $ ldd demo
 linux-gate.so.1 => (0xb7785000)
 libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb75bb000)
 /lib/ld-linux.so.2 (0x800e9000)
[20:33:30]-ubuntu-(~) $ ldd demo
 linux-gate.so.1 => (0xb7790000)
 libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb75c6000)
 /lib/ld-linux.so.2 (0x8002b000)

Turn off ASLR:
[20:33:31]-ubuntu-(~) $ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space
0
[20:33:56]-ubuntu-(~) $ ldd demo
 linux-gate.so.1 => (0xb7ffe000)
 libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7e34000)
 /lib/ld-linux.so.2 (0x80000000)
[20:33:58]-ubuntu-(~) $ ldd demo
 linux-gate.so.1 => (0xb7ffe000)
 libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7e34000)
 /lib/ld-linux.so.2 (0x80000000)

Problem

demo.c

#include<stdio.h>
#include<stdlib.h>

void print(char *string)
{
 char buffer[50];
 strcpy(buffer, string);
 puts(buffer);
}

void main(int argc, char **argv)
{
 print(argv[1]);
 exit(0);
}

Printing the maximum amount
without over-writing…

$./demo `perl -en 'print "A"
x50'`
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

Printing too much (writing over
return address)

$./demo `perl -en 'print "A"
x70'`
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA
Segmentation fault (core dumped)

Opening a shell (ret2libc...)

gdb$ r `perl -e 'print "A"x62 .
"\x90\x31\xe5\xb7" . "\xe0\x61\xe4\xb7" .
"\x24\x3a\xf7\xb7"'`
Starting program: /home/brandon/demo `perl
-e 'print "A"x62 . "\x90\x31\xe5\xb7" .
"\xe0\x61\xe4\xb7" . "\x24\x3a\xf7\xb7"'`
AAA
AAAAAAAAAAAAAAAAAAA�1���a��$:
[New process 28110]
process 28110 is executing new program:
/bin/dash
[New process 28111]
process 28111 is executing new program:
/bin/dash
$

Idea

Implement ASLR (Address Space Layout Randomization) which randomizes
memory segments.

This makes memory addresses harder to predict, therefore harder to jump to.

Keep user code static but randomize the stack.

Effectiveness depends on the amount of space the segment could be placed in.

Demo Plan

Show that a user cannot execute injected code on that environment’s stack.

When running the same program multiple times, the user stack should start at
a slightly different address each time.

Show that an attacker cannot brute-force guess a memory location. (sufficient
entropy)

Schedule

1st week - Planning

2nd week - Randomizing Stack

3rd week - Randomizing kernel code (.text)

4th week - Remaining implementation and testing

5th week - Testing, preparing for demo, write-up

Triplicate
Demsar, Teeny, Brennick

Problem
● Data storage devices can be flaky.
● Corruption can occur silently.

○ Cosmic rays!
○ Fluctuating power supplies, physical shock and vibrations, and electromagnetic interference.
○ Relatively rare, but often enough for it to happen to you.

Proposal
● Automatically fix block-level errors that occurred due to silent corruption from

external sources using data redundancy.

Detecting errors
● Mathematics
● Checksums can be calculated for blocks of data.
● CRC

○ Cyclic-redundancy-checksum
○ Fast and simple compared to cryptographic hashes.

Correcting errors
● From backups

○ Have to run manually, recovered manually. Hard to do with individual block errors. Would
need to restore the entire file.

○ “Don’t tell me about a problem if you can fix it.”

● From redundant blocks
○ Somewhat complex to implement.
○ Needs to automatically recover corrupted blocks from good blocks.
○ Hurts performance since every block written to the disk needs to be written twice.
○ Cache is unaffected, so the performance hit shouldn’t be too bad.

Demo (test)
1. Corrupt a block on the IDE device using a corrupter kernel monitor function.
2. Show the data at the corrupted block and compare it to the still good block.
3. Read the file that contains the corrupted block.
4. Show that the corrupted block has been recovered with the contents of the

good block.
5. Corrupt both blocks.
6. Kernel panic when the block cannot be recovered.

Implementation
● bio.c:bwrite

○ This is where buffered / cached blocks are flushed to disk.
○ We’ll have to write the buffered block and a duplicate.

● bio.c:bget
○ Cached blocks are okay.
○ Reading blocks from disk, have to verify checksums and attempt to take corrective action

● Can test our modifications with xv6’s stressfs.

● 1 week - Implement checksum methods, look into creating demo file.
● 2 weeks - Write kernel monitor file corrupter.
● 3 weeks - Set up new block metadata structs, reserve new space for

redundant blocks and checksums.
● 4 weeks - Change methods for editing block data to copy changes to

redundant blocks, change block reading methods to perform checksum
checks and attempt to recover from corruption.

Timeline

Stretch Goals
● Fully mirror a cluster of IDE devices for redundancy and failover, at the

filesystem level.
● Convert xv6’s journaling filesystem to a log-structured one.
● Option to control number of redundant blocks for greater or less redundancy

Paging to disk
by: Prem Saravanan, Henry Peteet, Millad Asgharneya

Problem Statement
With JOS now supporting multiple processes consider that we have 2 processes
that use 1.5GB of RAM each.

Currently JOS has no way of dealing with needing more than 2GB of memory for
all user-space programs and will either kill the process that pushes it over this
limit, or double-fault depending on implementations.

Idea (changing how page faults are handled)

Out of memory (got -E_NO_MEM)

1. Mark page as evicted in the page table
2. Write victim frame to swap partition and mark the page as evicted
3. Allocate the evicted physical frame to the page table entry that faulted

Page was previously swapped out

1. Find an empty page or select a new victim page to swap
2. Restore the page from disk into the new page

Demo plans
1. Show JOS (traditional) failing to run 2x 1.5GB processes (using malloc

repeatedly or some trivial example)
2. Show that these processes can now run under our version of JOS

Bonus
If we have extra time we would like to attempt the following alternatives to our
eviction logic.

1. Shared swap space
2. LRU approximation with 2 bits
3. Evicting pages from other processes
4. Metrics for each page replacement policy

Final Project Presentation
Online Tic-Tac-Toe Game + RAID

plus RAID enabled hard drive.Online Tic-Tac-Toe interactive gaming

Problem Statement

Idea
● We will implement the Network Driver first, so that two hosts can communicate

with each other.

● Then we will implement the RAID disk to let the information sent by the two

hosts can be safely stored on disk.

● Last we will realize the online Tic-Tac-Toe game so that to demonstrate how

interactive gaming can be achieved in our system.

Demo Plan
1. Demonstrate the correctness of network driver by transmitting a string between

two hosts.

2. Store the communicating strings on RAID disk, intentionally corrupt some bits

and recover the old values.

3. Open two hosts and play Tic-Tac-Toe game to demonstrate the game logic and

network ability.

Timeline

