CS3210: Clone and spinlock

Tutorial 7

Agenda

Kernel threads via. clone system call
In class exercise:

Completing the implementation of clone system call and spinlock

Fork and thread

Q: Difference between fork and thread?

Q: What do threads share with parent process?

Fork and thread

Fork creates a separate address space for each process

Threads share

Address space including text, data, and BSS segments

File descriptors, signals, current working directory, user and group

ID

Do not share

Thread ID, saved registers, stack pointer, instruction pointer

Stack, signal mask, priority (scheduling information)

Clone system call

Clone system call creates and sets up kernel stack (allocproc() in xvG)
It also sets up thread user stack using the parent stack
Sets the base and stack pointers, and then copies parents stack

Shares other references (files, pagedir)

Stack basics

void MyFunction3(int x, inty, int z)

{

int a=x, int b=y, int c=z;

return;

2 | [ebp + 16] (3rd function argument)
5 | [ebp + 12] (2nd argument)
10 | [ebp + 8] (1st argument)
RA| [ebp + 4] (return address)
FP | [ebp] (old ebp value)
| [ebp - 4] (1st local variable)

| | [ebp-X] (esp - the current stack pointer.
The use of push / pop is valid now)

Lab excercise goal today

Our patch has thread library to create thread

Thread library allocates stack page and passes it to clone

You will complete a stack setup first

Next, you will complete spinlock code in thread library (threadlib.c)
lock_init(lock t * lock)
lock_acquire(lock_t * lock)

lock _release(lock _t * lock)

Tutorial

Get a clean xv6 code and then get the patch from ¢s3210-pub

$ git clone https://github.com/mit-pdos/xv6-public.git
$ git clone git://tc.gtisc.gatech.edu/cs3210-pub

Copy the patch to xv6 dir and apply like this

$ patch -pl < tut07 students.patch

	CS3210: Clone and spinlock
	Agenda
	Fork and thread
	Fork and thread
	Clone system call
	Stack basics
	Lab excercise goal today
	Tutorial

