
CS3210: Clone and spinlock

Tutorial 7

1



Agenda

• Kernel threads via. clone system call

• In class exercise:

• Completing the implementation of clone system call and spinlock

2



Fork and thread

• Q: Difference between fork and thread?

• Q: What do threads share with parent process?

3



Fork and thread

• Fork creates a separate address space for each process

• Threads share

• Address space including text, data, and BSS segments

• File descriptors, signals, current working directory, user and group

ID

• Do not share

• Thread ID, saved registers, stack pointer, instruction pointer

• Stack, signal mask, priority (scheduling information)

4



Clone system call

• Clone system call creates and sets up kernel stack (allocproc() in xv6)

• It also sets up thread user stack using the parent stack

• Sets the base and stack pointers, and then copies parents stack

• Shares other references (files, pagedir)

5



Stack basics
6



Lab excercise goal today

• Our patch has thread library to create thread

• Thread library allocates stack page and passes it to clone

• You will complete a stack setup first

• Next, you will complete spinlock code in thread library (threadlib.c)

• lock_init(lock_t * lock)

• lock_acquire(lock_t * lock)

• lock_release(lock_t * lock)

7



Tutorial

• Get a clean xv6 code and then get the patch from cs3210-pub

$ git clone https://github.com/mit-pdos/xv6-public.git
$ git clone git://tc.gtisc.gatech.edu/cs3210-pub

• Copy the patch to xv6 dir and apply like this

$ patch -p1 < tut07_students.patch

8


	CS3210: Clone and spinlock
	Agenda
	Fork and thread
	Fork and thread
	Clone system call
	Stack basics
	Lab excercise goal today
	Tutorial

