Linux Kernel Module
Driver for Keyboard LEDs

Bridging the Gap Between the Kernel Space and the
User Space

Connor Reeder

Problem Statement:

The driver which Linux currently uses to activate and deactivate the Caps Lock
and Num Lock LED lights on a Toshiba Satellite C55-A5286 currently does not
allow for control from user space applications. The functionality of those two lights
is bound to the standard functions of Caps Lock mode and Num Lock mode,
respectively. Thus, there is no way to repurpose the lights to serve other functions
in the event that the user does not use those lights for their current function.

|dea

Write a Linux kernel module which containing a driver for the Toshiba Satellite
C55-A5286 keyboard LED lights which will replace the one currently in use.
The driver will mount each of the two LED lights as a linux special file node in
the /dev directory so as to allow any user space application to read and write
to it like any other device.

It will be mounted as a character device, thus requiring applications to read
and write to it in block-aligned sizes.

Create a simple user space program which will use the caps lock light as a
notification for some type of event.

Issues and Challenges

Lack of documentation for particular C55-A5286 hardware.

Most feasible way to control lights ended up being using LED subsystem
Creating and accessing user space files safely from the kernel space

Had to maintain multiple device files from the same driver, meaning that the
two lights share the same code and variables.

Intel Transactional
Synchronization Extensions

Robert Guthrie

An Introduction to Transactional Memory

Problem: Determining possible resource contention statically results in
unnecessary loss of concurrency dynamically.

int arr[4096];
int get(int i) {
lock();
int ret = arrfi]; Result?
unlock();
return ret;

Thread A: Thread B:
get(a); get(b);

An Introduction to Transactional Memory

Do Thread A and Thread B need to synchronize? Sometimes.

If a I= b, there is no contention between Thread A and Thread B. But this can only
be determined dynamically.

Transactional Memory is a way to dynamically determine if serialization on a lock is
necessary.

If unnecessary (like when a !=b), threads can continue with the critical section
without acquiring a lock.

An Introduction to Transactional Memory

What happens when there is a data conflict between threads in their transactional
regions?

The threads might have already executed instructions in their critical regions before
the conflict is determined.

An Introduction to Transactional Memory

Solution: While executing in transactional regions, memory writes are stored in a
local state invisible to other threads of execution.

Upon reaching the end of a transactional region, if no data conflict was detected,
the entire sequence of memory writes from the transactional region is committed to
main memory and visible to the rest of the threads.

If conflict is detected during execution, the processor state reverts to just before
entering the region, and execution continues serially.

Intel Transactional Synchronization Extensions

An API for using Transactional Memory in concurrent applications on Intel Skylake
(the most recent generation) and later

Brand new technology receiving a lot of current research

Provides a backwards-compatible Hardware Lock Elision (HLE) interface and more
powerful Restricted Transactional Memory (RTM) interface

Example RTM Code

New instructions

XBEGIN alt_path_addr
movl (%ebx), %eax
addl $1, %eax

movl %eax, (%ebx)
XEND

#ifdef USE_RTM

void tsx_rtm_lock(struct tsx_spinlock *lock) {
if ({_xbegin{) == _XBEGIN_STARTED) {
if (*lock = @)
return;
_xabort(@xff);
¥

while (xchg(lock, 1) != @)

void tsx_rtm_unlock({struct tsx_spinlock *lock) {
if (*lock = @)
_xend();
else

_lnck = @;

Example HLE Code

static inline wint32_t tsx_xacquire{uint32_t =*addr)
uint32_t result;
asm volatile("movl $1, %1\m\t"
“wxacquire xchgl %8, %1"
"+m" (*xaddr), “"+a"{result)

: ”CC"] ;
return result;

static inline wvoid tsx_xrelease{uint3Z_t saddr) {
uint32 t result;
asm volatile(
"movl $@, %1\n\t"
"xrelease xchgl %1, %@"
“+m" (*addr), "+a"(result)

IICC”];
asm volatile("pause");

TSX in JOS

Wanted to do optimization and benchmarking: not possible without booting

What | did:

® Finer-grained locking
® TSX protection of random access structures (envs array, pages, etc.)

Possible Optimizations:

® Allocate environment ID’s so that the envs structs are spread out as much as
possible (better: store in a hash map based on the environment ID)

TSX in User Programs

Wrote a hash map in C++, similar to tutorial 8
Demo

Design decisions using TSX

PAGING TO DISK

Sneh Munshi
Bhavani Jaladanki

Problem Statement

- Problem: Memory space in JOS is limited!

- Solution:
- Page Swapping:

- Program will be able to use any page it wants regardless of whether the
page is already in memory or not.

- Swapping should replace a page in memory that will not be used in the
near future, with the page in the disk that the program wants.

- Goal: make sure that the page switched out is one that is
rarely used since permanent storage is slower than
memory

B
Paging Server (disk)

- Uses in-memory bitmap — show which blocks are used in
the partition of paged out pages

- Similar to File System server

- 4 |IPCs — handled constantly in loop
- Page in
- Page out

- Discard Page
- Get Page Stats

B
Paging Library

- Uses a type of LRU to find page to swap out
- Page Map — Used w/ Page in

- Page Un-map — Used w/ Page out

- Page Allocation

- Page Fault handler

Demo Time!

- Tries to allocate more memory than the amount of
physical memory that system actually has, so paging out

- Tries to get pages that system allocated previously, so
paging in

- Will breakpoint in code w/o paging, & work in code w/
paging

B
Test #1: Normal Paging

- Goes from va 0x10000000 to 0x14000000, and allocates
the pages.

- Stores a number in sequence from 1, in each page

- Goes in loop and checks that each page has the right
number that represents the page number (linear)

S
Test #2: Random Paging

- Goes from va 0x10000000 to 0x18000000, and allocates
the pages.

- Stores a number in sequence from 1, in each page

- Randomly checks that each page has the right number
that represents the page number

B
Test #3: Page Eviction

- Goes from va 0x10000000 to 0x18000000, and allocates
the pages.

- Stores a number in sequence from 1, in each page

- Goes through pages from second half of memory, proving
that LRU is a good algorithm to use

Efficiency

LRU vs Linear

Page ins/Page Normal Paging Random Paging | Page Eviction

Outs

Linear 20317/25369 = 5302/22573 = 5989/23272 =
.80 23 .68

LRU 6477/11300 = 5256/22469 = 13963/31284 =
of 23 45

LRU generally produces a lower page in/page out, especially with big programs
like Normal Paging, which have many page ins to page outs

Conclusion

- Used exo-kernel style to give user programs permission to
have their own paging server and library for paging in and
out

- We made sure the ratio of page ins to page outs was not
very high

- Ensures that number of disk access are as low as
possible

B
Thank you!

WE HOPE YOU ENJOYED IT!

Extending JOS by
Implementing mmap()

Daniel Carnaubag, Nicolette Fink, Thomas Coe

read() and write() can be inefficient for non-sequential file access

o Lots of system call overhead (seeking)

Multiple processes accessing the same file can be inefficient

o Each process reads the file into a buffer in its individual
memory space

Context switching can be costly when making many system calls

for reading or writing files

map(), munmap(), and msync(

mmap() creates a new mapping in the virtual address space of the
calling process.

The munmap() system call deletes the mappings for the specified
address range, and causes further references to addresses within the
range to generate invalid memory references.

msync() flushes changes made to a file that was mapped into memory,
ensuring that changes are written back before munmap() is called.

) N\

Modes "‘

3pping

MAP_SHARED

Share this mapping. Updates to the mapping are visible to
other processes that map this file, and are carried through to
the underlying file.

MAP_PRIVATE

Create a private copy-on-write mapping. Updates to the
mapping are not visible to other processes mapping the same
file, and are not carried through to the underlying file. It

is unspecified whether changes made to the file after the
mmap() call are visible in the mapped region.

e MAP_PRIVATE and MAP_SHARED functionality
o Read and write to files opened with mmap()
o Access MAP_SHARED files from multiple processes
o Cause page faults by accessing unmapped files

e Benchmark mmap() vs. read()
o Compare sequential and non-sequential accesses

e Sample results of benchmarking test:

Questions?

Paging to Disk

Henry Peteet, Millad Asgharneya, Premkumar Saravanan

Problem statement revisited

0K, extended = 65532K

Our configuration of JOS has 64M of
physical memory.

If you use more than 64M the OS will kill i s

We LCome
g of comman

the environment. X

We added a panic just to highlight the
issue. -

How did we address it?

Swap out page

Process

Swap page back in

Swap Space

o

Out of memory

Allocate page

Normal path

— Pick victim

Page to disk

A

Filter (Remove

Return the page

A

stack, etc...)

shared pages, user

Log some
metadata
(va, env)

Reverse
lookup list

Mark page table
entry as “ON_DISK”
and store sector
number

Implementation

Page fault

Was on disk

Lookup location on
disk

Allocate a page (can
call previous slide)

Normal path

Normal page fault handler

A

4

Read page
from disk into
the new page

Return to user
as if nothing
happened

Testing

We wrote a test program that mimics dumbfork and writes/reads a bunch of
memory guaranteeing that all environments stay active the entire time.

With this we were able to break the old version of JOS, and see a successful run
on our modified version when we try to use 64M of memory (since the kernel
uses some of it as well)

Testing results

Original
Physical memory: 66556K available, base = 648K, extended = 65532K
check page alloc() succeeded!
check page() succeeded!
check_kern_pgdir() succeeded!
check_page_installed_padir() succeeded!
SMP: CPU @ found 1 CPU(s)
enabled interrupts: 1 2 4
[eoeEE000] new env ©0001600
[00601660] new env ©A0O1601
beginning writes
[00601001] new env ©00O1802
beginning writes
[AAARTAA2T new env AAAATAAR
[6B6616862] user panic in <unknown> at user/memoryoverload.c:72: sys_page_alloc
out of memory
Welcome to the JOS kernel monitor
Type 'help' for a list of commands.
TRAP frame at @xfe278efs from CPU ©
edi ©x00001001
esi ©x0e8023bb
ebp Oxeebfdf20
oesp Oxefffffdc
ebx @xeebfdf34
edx Oxeebfddcs8
ecx Ox00000001
eax 0Ox00000001
es 0x----8023
ds ©Ox----0023
trap Gx00080003 Breakpoint
err (Ox08080800
ax008003f0
Bx----001b
Ox00000292
@xeebfdefg
0x----8023

: Ox8003f0
: Bx8955fdeb

Physical memory: 64M available(16639 pages), base = 648K, extended = 65532K

SMP: CPU © found 1 CPU(s)

enabled interrupts: 1 2 4

Device 1 presence: 1

using disk 1

NBLOCKS=32768

free_block bitmap size = 328060

[00000080] new env BOOO1060

[00601080] new env 00001001

beginning writes

[00001001] new env BOEO1002

beginning writes

[00001002] new env 0ORO1063

beginning writes

beginning writes

base case done in env 1603

[0060010083] exiting gracefully

[00801003] free env 00001003

1002 sending to 10801

[6B0010082] exiting gracefully

[60801002] free env 00001002

1801 sending to 1000

[000010081] exiting gracefully

[00001001] free env 000016801

[008010080] exiting gracefully

[00001000] free env 00001000

No runnable environments im the system!

Welcome to the JOS kernel monitor!
'help' for a list of commands.

Results

1. We can run environments that use
more than 64M
2. We can evict from other

environments (so if we can start new
environments even when memory is full)

3. We use shared swap space

Limitations

1. Disk space
2. FIFO limitations

a. Commonly pages out pages that are used heavily
b. Can easily lead to more and more page faults

c. With more processes we can have more and more faults since working sets take up more of
memory

Questions?

Intel 80386 Emulator

Stephan Williams

Features

>200 opcodes
Can boot JOS

e Written in Rust Things Lab 1 JOS can live without:
s Trvial BIOS e Protected-mode segments

e Disk I/O over bus (READ SECTOR) e Memory Protection

e RAM over bus e Interrupts

e Text Display

e Virtual Memory

o

[

82384

CLOCK
GENERATOR
CLK2
I L
B0386 80387
MICRO- NUMERIC
PROCESSOR COPROCESSOR

80386 LOCAL BUS

[

82385

CACHE CACHE —
CONTROLLER
L
| SYSTEM BUS

el

2X CLOCK[

32+BIT|
535 rorom (B

BUS
CONTROL

BUS

ARBITRATION |

INTERRUPTS

CLK2

[«

ADS#

>

NA#

as16#’

DY
READY#

HOLD

HLDA »

INTR

RESET

vyYvYyy

80386
PROCESSOR

J

BE3# :

BE2#

BE1 4

BEO#

W/Ry#

3

J

D/C#

M/10#

LOCK#

YYYY VvVVYYY

PEREQ

\

J

BUSY#

ERROR#

A*A

Vee

<+
GND
<

A2~-A31

BYTE
ENABLES

E

32=BIT
ADDRESS

BUS CYCLE DEFINITION

COPROCESSOR SIGNALLING

] POWER CONNECTIONS

INSTRUCTION ADDRESS- OPERAND- SEGMENT
PREFIX SIZE PREFIX SIZE PREFIX OVERRIDE
0 OR 1 0 OR 1 0 OR 1 0 OR 1
NUMBER OF BYTES
OPCODE MODR/M SIB DISPLACEMENT IMMEDIATE
1 OR 2 0 OR 1 0 OR 1 01,2 08 4 0,1,2 OR 4

NUMBER OF BYTES

MODR/M BYTE

7 6 = 4 3 2 1
MOD REG/OPCODE R/M
SIB (SCALE INDEX BASE) BYTE

7 6 5 4 3 2 1
SS INDEX BASE

0 1 2 3 4 L} 6 7 8 9 A B c D E 4
ADD PUSH POP OR PUSH 2-byte
Eb, Gb I Ev,Gv I Gb, Eb I Gv,Ev I AL, Ib I ehX, Iv ES ES Eb, Gb | Ev, Gv l Gb, Eb) Gv,Ev | AL, Ib | eAX, Iv Cs escape
ADC PUSH POP SBB PUSH POP
Eb, Gb I Ev,Gv I Gb, Eb I Gv,Ev I AL, Ib I eAX, Iv ss SS Eb, Gb I Ev,Gv l Gb, Eb) Gv,Ev I AL, Ib I eAX, Iv DS Ds
AND SEG SUB SEG
DAA DAS
Eb, Gb I Ev,Gv I Gb, Eb I Gv,Ev I AL, Ib I ehX, Iv =ES Eb, Gb I Ev,Gv l Gb, Eb) Gv,Ev | AL, Ib I eAX, Iv =Cs
XOR SEG CcMP SEG
AAA AAS
Eb, Gb I Ev,Gv I Gb, Eb I Gv,Ev I AL,Ib I erX, Iv =85 Eb, Gb I Ev,Gv l Gb, Eb) Gv,Ev | AL, Ib | eRX, Iv =Cs
INC general register DEC general register
eAX | eCXx | eDX | eBX | esP | eBP | eSI | eDI eAX | eCXx | eDX) eBX | eSP | eBP | eSI | eDI
PUSH general register POP into general register
eAX eCX eDX eBX espP eBP eSI eDI eAX eCX eDX eBX esp eBP eSI eDI
BOUND ARPL SEG SEG Operand| Address| PUSH IMUL PUSH IMUL INSB INSW/D OUTSB [OUTSW/D
PUSHA POPA
Gv,Ma Ew, Rw =FS =GS Size Size Ib GVEVIV Ib GVEVIV Yb, DX Yb, DX Dx, Xb DX, Xv
Short displacement jump of condition (Jb) Short-displacement jump on condition (Jb)

Jo [JNO JB JNB Jz l JNZ JBE T JNBE Js —I JNS —I Jp —) JNP JL JNL JLE JNLE
Immediate Grpl Grpl TEST XCNG MoV MoV LEA MoV POP
Eb, Ib Ev,Iv Ev, Iv Eb,Gb | Ev,Gv Eb, Gb | Ev,Gv Eb, Gb Ev,Gv Gb, Eb Gv,Ev Ew, Sw Gv,M Sw, Ew Ev

XCHG word or double-word register with eAX CALL PUSHF POPF
NOP CBW CWD WAIT SAHF LAHF
eCx | eDX | eBX esp eBP eSI eDI Ap Fv Fv
MoV MOVSB MOVSW/D CMPSB CMPSW/D TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D
AL,Ob | eAX,ov | Ob, AL | ov, eAX Xb, Yb Xv,Yv Xb, Yb Xv, Yv AL, Ib eAX, Iv Yb, AL Yv,eAX AL, Xb eAX, Xv AL, Xb |eAX,Xv
MOV immediate byte into byte register MOV immediate word or double into word or double register
AL | CL DL | BL AH CH DH BH eAX eCXx eDX) eBX eSP eBP eSI eDI
Shift Grp2 RET near LES LDS MOV ENTER RET far INT INT
LEAVE INTO IRET
Eb, Ib | Ev,1Iv Iw | Gv,Mp Gv,Mp Eb, Ib Ev,Iv Iw,Ib Iw) 3 Ib
Shift Grp2
AMM AAD XLAT ESC (Escape to coprocessor instruction set)
Eb, 1 Ev,1 Eb, CL Ev,CL
LOOPNE LOOPE LOOP JCXZ IN our CALL JNP IN ouT
Jb Jb Jb Jb AL, Ib eAX, Ib Ib,AL | Ib,eAX Av Jv Ap Jb AL, DX eAX, DX DX,AL DX, eAX
REP Unary Grp3 INC/DEC |Indirct
LOCK REPNE HLT cMC CLC STC CLI STI CLD STD
REPE Eb | Ev Grp4 Grp5

Boot Process

e Execution begins at OxXFFFFFFFO (Reset Vector)
o 0xF000:0xFFFO with OxFFF00000 asserted by CPU
o Jump to BIOS at 0xF0000

e BIOS loads first sector of disk at 0x1F0 (bootloader) to 0x7CO00
o Jumps to 0x7C00

e Bootloader loads kernel from disk to address 0x100000
o Enters protected mode, etc.
o Jumps to 0x10000C

e Kernel sets up virtual memory, Serial/Keyboard/CGA 1/O

Extending JOS to Include
Networking Capabilities

Zain Rehmani and Adithya Nott

First.....let's run the Lab 6 scripts! :D

e We'll let them run in the background
e WEe’'ll show that all tests passed later on.

So... What is Lab 6 about?

Network server

User environments

echosrv

Core network environment

lwiP IPC Dispatcher
netwaork stack

BSD sockets over IPC

Send system call Receive system call
y

1
E1000 Hardware

Exercise 1

e Yet another system/trap call. Just handling a clock interrupt to give JOS a
sense of time.

e Allows JOS to have the ability to have the notion of network timeouts for the
purposes of retransmission

e Clock interrupt that is generated by hardware every 10 ms
o Just advance a variable each time the interrupt occurs to represent a timer

Exercise 2

e Literally just an RTFM exercise with reading Intel's guide on the E1000 driver.

intel)

PCI/PCI-X Family of Gigabit Ethernet
Controllers Software Developer’s

Manual

82540EP/EM, 82541xx, 82544GC/El, 82545GM/EM, 82546GB/EB, and
8254Txx

Exercise 3-6, 9-10

e Now apply the manual’s sections to make the E1000 driver

e Literally writing e1000.c from scratch
o “We have provided the kern/e1000.c and kern/e1000.h files for you so that you do not need to

mess with the build system. They are currently blank; you need to fill them in for this exercise.
You may also need to include the e1000.h file in other places in the kernel.”

e Nottoo hard to come ACrnss hll(‘lQ whpn VOl wrl’rp <tuff from scratch

efine [TRL _El606 {Gxﬂﬂﬁﬂﬂ f 4]
*define CTRL_2 El168680 (6xB0004 f 4)
=fine STATUS El86€ (6x68888 [/ 4)
efine EECD_E18088 (6x6018 7 4)
efine EERD E1806 (8x08814 f 4)
efine CTRL EXTENDED E1860 (6x80018 / 4)
=fine TDBAL El1B88 (0x83368 f 4)
#define TDBAH El1080 (0bx83804 f 4)
=fine TDLEN_El088 (0x83808 / 4)

Exercise 7

e Another syscall to transmit_packets from a userspace program.
o The TXD_DD_E1000 flag is used to determine if there is space to transmit a packet on the
tx_queue

o When attempting to send a packet, if the tx_queue is full, it will drop the packet and attempt to
transmit it another 10 times before giving up

Exercise 8

e Implementing net/output.c
o Reads a packet from the network server
o Sends the packet to the device driver

ile (true) {
envid t sender;
int perm = @;
uinti2 t req = ipc recv{&sender, &nsipcbuf, &perm);
iT (((uint3Z2 t*) sender = @) |] (perm = @)) {

iT (sender != ns_enwvid) {

1T (sys 21008 transmit({nsipcbuf.pkt.jp data, nsipcbuf.pkt.jp len) = -1) {
cprintf{“"Could not send the packet");

Exercise 11

e Function to receive packets as well as another system call
o Forthe receive side, if the TXD_DD_E1000 flag is not set, then no packet has been received
o If the receiving side is expecting a packet but nothing has yet been received, what should it
do?
m Option 1: Keep trying again
e This is wasteful because the receive queue may be empty for a long stretch of time
m Option 2: Suspend the calling environment until there are packets in the receive queue.

Allow E1000 to generate interrupts on receive. Resume the environment that is blocked

waiting for a packet.
e More involved, but better. We chose to do this.

Exercise 12

e Implementing net/input.c
o Read a packet from the device driver
o Send the packet to the network server

int permissions = PTE P | PTE W | PTE_U;
s5ize t len:
char packet[PACKET BUF SIZE]:
Le {trua) {
(sys_elB@8_receive(packet, &len) < 8) {

1

int ret wval:
({ret_val = sys paae alloc(0, &nsipcbuf, permissions)) < @) {
panic("cant allocate page"}:

1

memmove (nsipcbuf.pkt.jp _data, packet, len):;

nsipcbuf.pkt.jp_len = len;

ipc send(ns_enwvid, NSREQ _INPUT, &nsipcbuf, permissions):

Exercise 13

e Basic web server implementation, which can send the contents of a file to a
requesting client
e Implement send file and send_data

int
send data(struct http_request *req. int fd)
i

int buffer size = 1024;
char buffer[buffer_size]:
int len;

i {{fd = open{reg-=url, ﬂ_RI]l]HLYH =08) {
send error{req, 464);

= ((len = read({fd. buffer, buffer_size)) = &) { t ?.fd:d.
(write(reg-»sock, buffer, len) 1= len) { kit
die("send data errorin"}; !
} 1 i ({r = stat(reg-surl, &buf)) =« @ || buf.st isdir) {
i .. send error{req, 4084);:
r joto end;
¥
y

file size = buf.st size;

Beyond core Lab 6

e (QEMU’s default MAC address is hardcoded in the code to work...

Ilnlill CODING IS Bﬂll

&,
i 0
' @0 Q

AND YIII‘SIIIIII}.

Electrically Erasable Programmable Read-Only Memory (EEPROM)

e \Why not use the EEPROM to handle the MAC address initialization for us?

e Allows us to use multiple different MAC Address values with QEMU, with it
being handled dynamically as opposed to only one preset value.

w

Implementation Details

e Loading MAC address out of EEPROM
e Yet another syscall.....this time to get the MAC address for IwIP
e IwlP modified to use this syscall instead of just some hardcoded value

e And now, a brief demo :D

What we would do with a bit more time

e Revisit DSM concept. A lot of it is just locking pages and sending page data over
a network.
e More challenge problems

o We have some code here and there going for the web chat server, but it's not in a demoable state.
m Idea in theory would have been to have multiple instances of a python script all being used

to send messages and the web chat server would receive these messages and display them

(with user customization with colors and the like :D)
m Issues getting the right socket configuration with QEMU to interact with the script.

Difficulties we faced

e Got behind schedule due to uncaught bugs from Lab 4 impacting completion
of Lab 5 (hindered progress on Lab 6)
e \Very elusive bug in e1000.c that caused testinput and onward to fail for Lab 6
o Took along time to figure out why packets were missing

e Connectivity among different programs, let alone different computers
o Interacting with QEMU via sockets for the web chat server problem
o QEMU virtualization

e Now we see why MIT OCW descriptions of Lab 6 always seem to mention

that it’s is the “default” final project.
o It became clear that Lab 6 was more feasible than hardcore attempting DSM
o Version of Lab 6 we saw via Google was different (E100 driver vs E1000 driver)
o We didn'’t get full details of Lab 6 until well after proposal

Any Questions?

