
Linux Kernel Module
Driver for Keyboard LEDs

Bridging the Gap Between the Kernel Space and the
User Space

Connor Reeder

Problem Statement:
The driver which Linux currently uses to activate and deactivate the Caps Lock
and Num Lock LED lights on a Toshiba Satellite C55-A5286 currently does not
allow for control from user space applications. The functionality of those two lights
is bound to the standard functions of Caps Lock mode and Num Lock mode,
respectively. Thus, there is no way to repurpose the lights to serve other functions
in the event that the user does not use those lights for their current function.

Idea
● Write a Linux kernel module which containing a driver for the Toshiba Satellite

C55-A5286 keyboard LED lights which will replace the one currently in use.
● The driver will mount each of the two LED lights as a linux special file node in

the /dev directory so as to allow any user space application to read and write
to it like any other device.

● It will be mounted as a character device, thus requiring applications to read
and write to it in block-aligned sizes.

● Create a simple user space program which will use the caps lock light as a
notification for some type of event.

Issues and Challenges
● Lack of documentation for particular C55-A5286 hardware.
● Most feasible way to control lights ended up being using LED subsystem
● Creating and accessing user space files safely from the kernel space
● Had to maintain multiple device files from the same driver, meaning that the

two lights share the same code and variables.

Intel Transactional
Synchronization Extensions

Robert Guthrie

An Introduction to Transactional Memory

Problem: Determining possible resource contention statically results in
unnecessary loss of concurrency dynamically.

int arr[4096];
int get(int i) {
 lock();
 int ret = arr[i];
 unlock();
 return ret;
}

Thread A: Thread B:
get(a); get(b);

Result?

An Introduction to Transactional Memory

Do Thread A and Thread B need to synchronize? Sometimes.

If a != b, there is no contention between Thread A and Thread B. But this can only
be determined dynamically.

Transactional Memory is a way to dynamically determine if serialization on a lock is
necessary.

If unnecessary (like when a != b), threads can continue with the critical section
without acquiring a lock.

An Introduction to Transactional Memory

What happens when there is a data conflict between threads in their transactional
regions?

The threads might have already executed instructions in their critical regions before
the conflict is determined.

An Introduction to Transactional Memory

Solution: While executing in transactional regions, memory writes are stored in a
local state invisible to other threads of execution.

Upon reaching the end of a transactional region, if no data conflict was detected,
the entire sequence of memory writes from the transactional region is committed to
main memory and visible to the rest of the threads.

If conflict is detected during execution, the processor state reverts to just before
entering the region, and execution continues serially.

Intel Transactional Synchronization Extensions

An API for using Transactional Memory in concurrent applications on Intel Skylake
(the most recent generation) and later

Brand new technology receiving a lot of current research

Provides a backwards-compatible Hardware Lock Elision (HLE) interface and more
powerful Restricted Transactional Memory (RTM) interface

Example RTM Code

New instructions

XBEGIN alt_path_addr
movl (%ebx), %eax
addl $1, %eax
movl %eax, (%ebx)
XEND

Example HLE Code

TSX in JOS

Wanted to do optimization and benchmarking: not possible without booting

What I did:

● Finer-grained locking
● TSX protection of random access structures (envs array, pages, etc.)

Possible Optimizations:

● Allocate environment ID’s so that the envs structs are spread out as much as
possible (better: store in a hash map based on the environment ID)

TSX in User Programs

Wrote a hash map in C++, similar to tutorial 8

Demo

Design decisions using TSX

PAGING TO DISK
Sneh Munshi
Bhavani Jaladanki

Problem Statement
• Problem: Memory space in JOS is limited!

• Solution:
•  Page Swapping:

•  Program will be able to use any page it wants regardless of whether the
page is already in memory or not.

•  Swapping should replace a page in memory that will not be used in the
near future, with the page in the disk that the program wants.

• Goal: make sure that the page switched out is one that is

rarely used since permanent storage is slower than
memory

Paging Server (disk)

• Uses in-memory bitmap – show which blocks are used in
the partition of paged out pages

• Similar to File System server

•  4 IPCs – handled constantly in loop
•  Page in
•  Page out
•  Discard Page
•  Get Page Stats

Paging Library
• Uses a type of LRU to find page to swap out

• Page Map – Used w/ Page in

• Page Un-map – Used w/ Page out

• Page Allocation

• Page Fault handler

Demo Time!
•  Tries to allocate more memory than the amount of

physical memory that system actually has, so paging out

•  Tries to get pages that system allocated previously, so
paging in

• Will breakpoint in code w/o paging, & work in code w/
paging

Test #1: Normal Paging
• Goes from va 0x10000000 to 0x14000000, and allocates

the pages.

• Stores a number in sequence from 1, in each page

• Goes in loop and checks that each page has the right
number that represents the page number (linear)

Test #2: Random Paging
• Goes from va 0x10000000 to 0x18000000, and allocates

the pages.

• Stores a number in sequence from 1, in each page

• Randomly checks that each page has the right number
that represents the page number

Test #3: Page Eviction
• Goes from va 0x10000000 to 0x18000000, and allocates

the pages.

• Stores a number in sequence from 1, in each page

• Goes through pages from second half of memory, proving
that LRU is a good algorithm to use

Efficiency
LRU vs Linear

Page ins/Page
Outs

Normal Paging Random Paging Page Eviction

Linear 20317/25369 =
.80

5302/22573 =
.23

5989/23272 =
.68

LRU 6477/11300 =
.57

5256/22469 =
.23

13963/31284 =
.45

LRU generally produces a lower page in/page out, especially with big programs
like Normal Paging, which have many page ins to page outs

Conclusion
• Used exo-kernel style to give user programs permission to

have their own paging server and library for paging in and
out

• We made sure the ratio of page ins to page outs was not

very high

• Ensures that number of disk access are as low as
possible

Thank you!

WE HOPE YOU ENJOYED IT!

 Daniel Carnauba, Nicolette Fink, Thomas Coe

Extending JOS by
Implementing mmap()

Problem Statement

● read() and write() can be inefficient for non-sequential file access

○ Lots of system call overhead (seeking)

● Multiple processes accessing the same file can be inefficient

○ Each process reads the file into a buffer in its individual

memory space

● Context switching can be costly when making many system calls

for reading or writing files

Implementation: mmap(), munmap(), and msync()

● mmap() creates a new mapping in the virtual address space of the
calling process.

● The munmap() system call deletes the mappings for the specified
address range, and causes further references to addresses within the
range to generate invalid memory references.

● msync() flushes changes made to a file that was mapped into memory,
ensuring that changes are written back before munmap() is called.

Implementation: Mapping Modes

MAP_SHARED
 Share this mapping. Updates to the mapping are visible to
 other processes that map this file, and are carried through to
 the underlying file.

MAP_PRIVATE
 Create a private copy-on-write mapping. Updates to the
 mapping are not visible to other processes mapping the same
 file, and are not carried through to the underlying file. It
 is unspecified whether changes made to the file after the
 mmap() call are visible in the mapped region.

● MAP_PRIVATE and MAP_SHARED functionality
○ Read and write to files opened with mmap()
○ Access MAP_SHARED files from multiple processes
○ Cause page faults by accessing unmapped files

● Benchmark mmap() vs. read()
○ Compare sequential and non-sequential accesses

Demo

● Sample results of benchmarking test:

Demo

Sequential Random

mmap() 10 ms <10 ms

read() 1850 ms 2050 ms

Questions?

Paging to Disk
Henry Peteet, Millad Asgharneya, Premkumar Saravanan

Problem statement revisited
Our configuration of JOS has 64M of
physical memory.

If you use more than 64M the OS will kill
the environment.

We added a panic just to highlight the
issue.

How did we address it?

Allocate page Pick victim

Return the page

Page to disk

Log some
metadata
(va, env)

Reverse
lookup list

Out of memory

Normal path

Mark page table
entry as “ON_DISK”
and store sector
number

Filter (Remove
shared pages, user
stack, etc…)

Implementation

Page fault Lookup location on
disk

Allocate a page (can
call previous slide)

Was on disk

Normal path

Read page
from disk into
the new page

Normal page fault handler
Return to user
as if nothing
happened

Testing
We wrote a test program that mimics dumbfork and writes/reads a bunch of
memory guaranteeing that all environments stay active the entire time.

With this we were able to break the old version of JOS, and see a successful run
on our modified version when we try to use 64M of memory (since the kernel
uses some of it as well)

Testing results
Original Ours

Results
1. We can run environments that use

more than 64M
2. We can evict from other

environments (so if we can start new
environments even when memory is full)

3. We use shared swap space

Limitations
1. Disk space
2. FIFO limitations

a. Commonly pages out pages that are used heavily
b. Can easily lead to more and more page faults

c. With more processes we can have more and more faults since working sets take up more of
memory

Questions?

Intel 80386 Emulator
Stephan Williams

Features
● Written in Rust

● Trivial BIOS

● Disk I/O over bus (READ SECTOR)

● RAM over bus

● Text Display

● Virtual Memory

● >200 opcodes

● Can boot JOS

Things Lab 1 JOS can live without:

● Protected-mode segments

● Memory Protection

● Interrupts

Boot Process
● Execution begins at 0xFFFFFFF0 (Reset Vector)

○ 0xF000:0xFFF0 with 0xFFF00000 asserted by CPU

○ Jump to BIOS at 0xF0000

● BIOS loads first sector of disk at 0x1F0 (bootloader) to 0x7C00

○ Jumps to 0x7C00

● Bootloader loads kernel from disk to address 0x100000

○ Enters protected mode, etc.

○ Jumps to 0x10000C

● Kernel sets up virtual memory, Serial/Keyboard/CGA I/O

Extending JOS to Include
Networking Capabilities

Zain Rehmani and Adithya Nott

First…..let’s run the Lab 6 scripts! :D
● We’ll let them run in the background
● We’ll show that all tests passed later on.

So… What is Lab 6 about?

Exercise 1
● Yet another system/trap call. Just handling a clock interrupt to give JOS a

sense of time.
● Allows JOS to have the ability to have the notion of network timeouts for the

purposes of retransmission
● Clock interrupt that is generated by hardware every 10 ms

○ Just advance a variable each time the interrupt occurs to represent a timer

Exercise 2
● Literally just an RTFM exercise with reading Intel’s guide on the E1000 driver.

Exercise 3-6, 9-10
● Now apply the manual’s sections to make the E1000 driver
● Literally writing e1000.c from scratch

○ “We have provided the kern/e1000.c and kern/e1000.h files for you so that you do not need to

mess with the build system. They are currently blank; you need to fill them in for this exercise.
You may also need to include the e1000.h file in other places in the kernel.”

● Not too hard to come across bugs when you write stuff from scratch

Exercise 7
● Another syscall to transmit_packets from a userspace program.

○ The TXD_DD_E1000 flag is used to determine if there is space to transmit a packet on the
tx_queue

○ When attempting to send a packet, if the tx_queue is full, it will drop the packet and attempt to
transmit it another 10 times before giving up

Exercise 8
● Implementing net/output.c

○ Reads a packet from the network server
○ Sends the packet to the device driver

Exercise 11
● Function to receive packets as well as another system call

○ For the receive side, if the TXD_DD_E1000 flag is not set, then no packet has been received

○ If the receiving side is expecting a packet but nothing has yet been received, what should it
do?

■ Option 1: Keep trying again
● This is wasteful because the receive queue may be empty for a long stretch of time

■ Option 2: Suspend the calling environment until there are packets in the receive queue.

Allow E1000 to generate interrupts on receive. Resume the environment that is blocked
waiting for a packet.

● More involved, but better. We chose to do this.

Exercise 12
● Implementing net/input.c

○ Read a packet from the device driver
○ Send the packet to the network server

Exercise 13
● Basic web server implementation, which can send the contents of a file to a

requesting client
● Implement send_file and send_data

Beyond core Lab 6
● QEMU’s default MAC address is hardcoded in the code to work...

Electrically Erasable Programmable Read-Only Memory (EEPROM)

● Why not use the EEPROM to handle the MAC address initialization for us?

● Allows us to use multiple different MAC Address values with QEMU, with it
being handled dynamically as opposed to only one preset value.

Implementation Details
● Loading MAC address out of EEPROM
● Yet another syscall…..this time to get the MAC address for IwIP
● IwIP modified to use this syscall instead of just some hardcoded value

● And now, a brief demo :D

What we would do with a bit more time
● Revisit DSM concept. A lot of it is just locking pages and sending page data over

a network.
● More challenge problems

○ We have some code here and there going for the web chat server, but it’s not in a demoable state.

■ Idea in theory would have been to have multiple instances of a python script all being used

to send messages and the web chat server would receive these messages and display them
(with user customization with colors and the like :D)

■ Issues getting the right socket configuration with QEMU to interact with the script.

Difficulties we faced
● Got behind schedule due to uncaught bugs from Lab 4 impacting completion

of Lab 5 (hindered progress on Lab 6)
● Very elusive bug in e1000.c that caused testinput and onward to fail for Lab 6

○ Took a long time to figure out why packets were missing

● Connectivity among different programs, let alone different computers
○ Interacting with QEMU via sockets for the web chat server problem
○ QEMU virtualization

● Now we see why MIT OCW descriptions of Lab 6 always seem to mention
that it’s is the “default” final project.

○ It became clear that Lab 6 was more feasible than hardcore attempting DSM
○ Version of Lab 6 we saw via Google was different (E100 driver vs E1000 driver)
○ We didn’t get full details of Lab 6 until well after proposal

Any Questions?

