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Administrivia
Lab 4 Part C Due Tomorrow

Quiz #2. Lab3-4, Ch 3-6 (read "xv6 book")

Open laptop/book, no Internet
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Summary of cs3210
Power-on -> BIOS -> bootloader -> kernel -> user programs

OS:OS: abstraction, multiplexing, isolation, sharing

Design:Design: monolithic (xv6) vs. micro kernels (jos)

Abstraction:Abstraction: process, system calls, [[files]], IPC, networking (lab6)

Isolation mechanisms:Isolation mechanisms: CPL, segmentation, paging

File systems:File systems: structure (superblock, inode, log, block), API, buffer cache
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Why crash recovery (power failure)?
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Why crash recovery (bugs)?
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What happens after a FS crash?
Is it possible that AAAA doesn't exist? (yes/no?) Then, BBBB?

Is it possible that BBBB contains junks? (yes/no?)

Is it possible that BBBB is empty? (yes/no?)

Is it possible that BBBB contains "hello"? (yes/no?)

Is it possible that BB exists in the current directory? (yes/no?)

$ cat AAAA
hello world!
$ cp AAAA BBBB
[panic] ...
[reboot]
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Why crash recovery?
Then, is your file system still usable?

Main problem:

Crash during multi-step operation

Leaves FS invariants violated (Q: examples?)

Can lead to ugly FS corruption

Worse yet, media corruption (very frequent!) is out-of-scope

Ex. bit rot, silent corruption

Media error vs memory error?

Detect? Correct? ECC memory, ZFS, etc.
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Example: inconsistent file systems
Breakdowns of create():

create new dirent

allocate file inode

Crash: dirent points to free inode -- disaster!

Crash: inode not free but not used -- not so bad
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Today's Lecture
Problem: crash recovery

crash leads to inconsistent on-disk file system

on-disk data structure has "dangling" pointers

Solutions:

synchronous write

delayed writes (e.g., write-back cache, soft updates)

logging
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What can we hope for? (after recovery)
1. FS internal invariants maintained

e.g., no block is both in free list and in a file

2. All but last few operations preserved on disk

e.g., data written yesterday are preserved

3. No order anomalies

echo 99 > result ; echo done > status
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Simplifying assumption: disk is "fail-
stop"

Disk executes the writes FS sends it, and does nothing else

Perhaps doesn't perform the very last write

no wild writes

no decay of sectors
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Correctness vs. performance
Safety -> write to disk ASAP

Speed -> don't write the disk (e.g., batch, write-back cache)

Two approaches:

synchronous meta-data update + fsck (linux ext2)

logging (xv6 and linux ext3/4)

meta-datameta-data: other than actual file contents (i.e., data block)
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Synchronous-write solution
Synchronous meta-data update:

an old approach to crash recovery
simple, slow, incomplete

Most problem cases look like dangling references

inode -> free block
dirent -> free inode
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Idea: always initialize on disk before
creating any reference

"synchronous writes" is implemented by

1. doing the initialization write

2. waiting for it to complete

3. and then doing the referencing write
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Example: file creation
Q: what's the right order of synchronous writes (dirent -> free inode)?
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Example: file creation
Q: what's the right order of synchronous writes (dirent -> free inode)?

1. mark inode as allocated

2. create directory entry
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What will be true after crash+reboot?
create():

1. mark inode as allocated <- Q: what if failed after ialloc()?

2. create directory entry
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Idea: fix FS when mounting (if crashed)

To free unreferenced inodes and blocks (orphan)

To clean-up an interrupted rename()
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Problems with sync. meta-data update
Very slow during normal operation (Q: why?)

Very slow during recovery (Q: why? e.g., 100 MB/sec on 2TB HDD)
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How to get better performance?
Use RAM (e.g., write-back cache)

Exploit disk sequential throughput (100 MB/sec)

Keep track of dependencies among buffer caches

Q: cycle dependencies?

Q: still need slow fsck?
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Storage performance
Q: HDD vs. SSD? faster? bandwidth?

Q: which one is faster? read vs. write?

Q: in sequential vs. random?

(ref. http://www.pcgamer.com/hard-drive-vs-ssd-performance/2/)
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Chart1: Sequential read
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Chart2: Sequential write

CS3210 - Spring 2017
23 / 45



Chart3: Random read
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Chart4: Random write
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Better idea: "logging"
How can we get both speed and safety?

write only to cache

somehow remember relationships among writes

e.g., don't send #1 to disk w/o #2 and #3
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Goals of logging
1. Atomic system calls w.r.t. crashes

2. Fast recovery (no hour-long fsck)

3. Speed of write-back cache for normal operations
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Basic approach: "write-ahead" logging
AtomicityAtomicity: transaction either fails or succeeds

1. record all writes to the log

2. record "done"

3. do the real writes

4. clear "done"

On crash+recovery:

if "done" in log, replay all writes in log

if no "done", ignore log
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xv6's simple logging
01    + beg_op();
02       bp = bread(dev, bn);
03       // modify bp=>data[]
04    -  bwrite(buf);
05    +  log_write(bp);
06       brelse(bp);
07    + end_op();
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xv6's simple logging
01    + beg_op();
02       bp = bread(dev, bn);
03       // modify bp=>data[]
04    -  bwrite(buf);
05    +  log_write(bp);
06       brelse(bp);
07    + end_op();

What is good about this design?
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xv6's simple logging
01    + beg_op();
02       bp = bread(dev, bn);
03       // modify bp=>data[]
04    -  bwrite(buf);
05    +  log_write(bp);
06       brelse(bp);
07    + end_op();

What is good about this design?
Correctness due to write-ahead log

Good disk throughput (Q: why? why not?)

Faster recovery without slow fsck

Q: What about concurrency?

xv6: no concurrency to make our life easier
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Disk structure for logging

superblock data blocks
logheader

log

n
block[LOGSIZE]

n

...
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Example: writing a block (bn = 100)

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

DD...
...

AA...
bn=100

n=0

CS3210 - Spring 2017
33 / 45



Step1: writing to a log

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=0

AA...

AA...
bn=100

DD...
...
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Step2: flushing the logheader
(committing)

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=1

AA...

AA...
bn=100

DD...

n = 1
block[0] = 100

...
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Step3: overwriting the data block

superblock data blocks
logheader

log

... n = 1
block[LOGSIZE]

AA...AA...

n = 1
block[0] = 100

...

AA...
bn=100

n=1
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Step4: cleaning up the logheader

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

AA...

bn=100

AA...

n = 1
block[0] = 100

...

n = 0
block[0] = 0

n=0
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What if failed (say power-o! and
reboot)?

Does FS contain "AA.." (❶) or "BB.." (❷)?

Step1: writing to a log (❶/❷?)

Step2: flushing the logheader (❶/❷?)

Step3: overwriting the data block (❶/❷?)

Step4: cleaning up the logheader (❶/❷?)
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Step1: writing to a log

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=0

AA...

AA...
bn=100

DD...
...

CS3210 - Spring 2017
39 / 45



Step2: flushing the logheader

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=1

AA...

AA...
bn=100

DD...

n = 1
block[0] = 100

...
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Step3: overwriting the data block

superblock data blocks
logheader

log

... n = 1
block[LOGSIZE]

AA...AA...

n = 1
block[0] = 100

...

AA...
bn=100

n=1
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Step4: cleaning up the logheader?

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

AA...

bn=100

AA...

n = 1
block[0] = 100

...

n = 0
block[0] = 0

n=0
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DEMO: dumplog.c
01    static void commit() {
02      if (log.lh.n > 0) {
03        write_log();     // Write modified blocks from cache to log
04        // Q1: panic("after writing to log!");
05        write_head();    // Write header to disk -- the real commit
06        // Q2: panic("after writing the loghead!");
07        install_trans(); // Now install writes to home locations
08        // Q3: panic("after the transaction!");
09        log.lh.n = 0;
10        write_head();    // Erase the transaction from the log
11        // Q4: panic("after cleaning the loghead!");
12      }
13    }
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A few complications
How to write larger data that doesn't fit to the log region?

How to handle concurrency?

How to avoid 2x writing (redundant)?

How to log partial data (changes on a few bits)?
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