
CS3210: Crash consistency
Kyle Harrigan

CS3210 - Spring 2017
1 / 45



Administrivia
Lab 4 Part C Due Tomorrow

Quiz #2. Lab3-4, Ch 3-6 (read "xv6 book")

Open laptop/book, no Internet

CS3210 - Spring 2017
2 / 45



Summary of cs3210
Power-on -> BIOS -> bootloader -> kernel -> user programs

OS:OS: abstraction, multiplexing, isolation, sharing

Design:Design: monolithic (xv6) vs. micro kernels (jos)

Abstraction:Abstraction: process, system calls, [[files]], IPC, networking (lab6)

Isolation mechanisms:Isolation mechanisms: CPL, segmentation, paging

File systems:File systems: structure (superblock, inode, log, block), API, buffer cache

CS3210 - Spring 2017
3 / 45



Why crash recovery (power failure)?

CS3210 - Spring 2017
4 / 45



Why crash recovery (bugs)?

CS3210 - Spring 2017
5 / 45



What happens after a FS crash?
Is it possible that AAAA doesn't exist? (yes/no?) Then, BBBB?

Is it possible that BBBB contains junks? (yes/no?)

Is it possible that BBBB is empty? (yes/no?)

Is it possible that BBBB contains "hello"? (yes/no?)

Is it possible that BB exists in the current directory? (yes/no?)

$ cat AAAA
hello world!
$ cp AAAA BBBB
[panic] ...
[reboot]

CS3210 - Spring 2017
6 / 45



Why crash recovery?
Then, is your file system still usable?

Main problem:

Crash during multi-step operation

Leaves FS invariants violated (Q: examples?)

Can lead to ugly FS corruption

Worse yet, media corruption (very frequent!) is out-of-scope

Ex. bit rot, silent corruption

Media error vs memory error?

Detect? Correct? ECC memory, ZFS, etc.

CS3210 - Spring 2017
7 / 45



Example: inconsistent file systems
Breakdowns of create():

create new dirent

allocate file inode

Crash: dirent points to free inode -- disaster!

Crash: inode not free but not used -- not so bad

CS3210 - Spring 2017
8 / 45



Today's Lecture
Problem: crash recovery

crash leads to inconsistent on-disk file system

on-disk data structure has "dangling" pointers

Solutions:

synchronous write

delayed writes (e.g., write-back cache, soft updates)

logging

CS3210 - Spring 2017
9 / 45



What can we hope for? (after recovery)
1. FS internal invariants maintained

e.g., no block is both in free list and in a file

2. All but last few operations preserved on disk

e.g., data written yesterday are preserved

3. No order anomalies

echo 99 > result ; echo done > status

CS3210 - Spring 2017
10 / 45



Simplifying assumption: disk is "fail-
stop"

Disk executes the writes FS sends it, and does nothing else

Perhaps doesn't perform the very last write

no wild writes

no decay of sectors

CS3210 - Spring 2017
11 / 45



Correctness vs. performance
Safety -> write to disk ASAP

Speed -> don't write the disk (e.g., batch, write-back cache)

Two approaches:

synchronous meta-data update + fsck (linux ext2)

logging (xv6 and linux ext3/4)

meta-datameta-data: other than actual file contents (i.e., data block)

CS3210 - Spring 2017
12 / 45



Synchronous-write solution
Synchronous meta-data update:

an old approach to crash recovery
simple, slow, incomplete

Most problem cases look like dangling references

inode -> free block
dirent -> free inode

CS3210 - Spring 2017
13 / 45



Idea: always initialize on disk before
creating any reference

"synchronous writes" is implemented by

1. doing the initialization write

2. waiting for it to complete

3. and then doing the referencing write

CS3210 - Spring 2017
14 / 45



Example: file creation
Q: what's the right order of synchronous writes (dirent -> free inode)?

CS3210 - Spring 2017
15 / 45



Example: file creation
Q: what's the right order of synchronous writes (dirent -> free inode)?

1. mark inode as allocated

2. create directory entry

CS3210 - Spring 2017
16 / 45



What will be true after crash+reboot?
create():

1. mark inode as allocated <- Q: what if failed after ialloc()?

2. create directory entry

CS3210 - Spring 2017
17 / 45



Idea: fix FS when mounting (if crashed)

To free unreferenced inodes and blocks (orphan)

To clean-up an interrupted rename()

CS3210 - Spring 2017
18 / 45



Problems with sync. meta-data update
Very slow during normal operation (Q: why?)

Very slow during recovery (Q: why? e.g., 100 MB/sec on 2TB HDD)

CS3210 - Spring 2017
19 / 45



How to get better performance?
Use RAM (e.g., write-back cache)

Exploit disk sequential throughput (100 MB/sec)

Keep track of dependencies among buffer caches

Q: cycle dependencies?

Q: still need slow fsck?

CS3210 - Spring 2017
20 / 45



Storage performance
Q: HDD vs. SSD? faster? bandwidth?

Q: which one is faster? read vs. write?

Q: in sequential vs. random?

(ref. http://www.pcgamer.com/hard-drive-vs-ssd-performance/2/)

CS3210 - Spring 2017
21 / 45

http://www.pcgamer.com/hard-drive-vs-ssd-performance/2/


Chart1: Sequential read

CS3210 - Spring 2017
22 / 45



Chart2: Sequential write

CS3210 - Spring 2017
23 / 45



Chart3: Random read

CS3210 - Spring 2017
24 / 45



Chart4: Random write

CS3210 - Spring 2017
25 / 45



Better idea: "logging"
How can we get both speed and safety?

write only to cache

somehow remember relationships among writes

e.g., don't send #1 to disk w/o #2 and #3

CS3210 - Spring 2017
26 / 45



Goals of logging
1. Atomic system calls w.r.t. crashes

2. Fast recovery (no hour-long fsck)

3. Speed of write-back cache for normal operations

CS3210 - Spring 2017
27 / 45



Basic approach: "write-ahead" logging
AtomicityAtomicity: transaction either fails or succeeds

1. record all writes to the log

2. record "done"

3. do the real writes

4. clear "done"

On crash+recovery:

if "done" in log, replay all writes in log

if no "done", ignore log

CS3210 - Spring 2017
28 / 45



xv6's simple logging
01    + beg_op();
02       bp = bread(dev, bn);
03       // modify bp=>data[]
04    -  bwrite(buf);
05    +  log_write(bp);
06       brelse(bp);
07    + end_op();

CS3210 - Spring 2017
29 / 45



xv6's simple logging
01    + beg_op();
02       bp = bread(dev, bn);
03       // modify bp=>data[]
04    -  bwrite(buf);
05    +  log_write(bp);
06       brelse(bp);
07    + end_op();

What is good about this design?

CS3210 - Spring 2017
30 / 45



xv6's simple logging
01    + beg_op();
02       bp = bread(dev, bn);
03       // modify bp=>data[]
04    -  bwrite(buf);
05    +  log_write(bp);
06       brelse(bp);
07    + end_op();

What is good about this design?
Correctness due to write-ahead log

Good disk throughput (Q: why? why not?)

Faster recovery without slow fsck

Q: What about concurrency?

xv6: no concurrency to make our life easier

CS3210 - Spring 2017
31 / 45



Disk structure for logging

superblock data blocks
logheader

log

n
block[LOGSIZE]

n

...

CS3210 - Spring 2017
32 / 45



Example: writing a block (bn = 100)

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

DD...
...

AA...
bn=100

n=0

CS3210 - Spring 2017
33 / 45



Step1: writing to a log

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=0

AA...

AA...
bn=100

DD...
...

CS3210 - Spring 2017
34 / 45



Step2: flushing the logheader
(committing)

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=1

AA...

AA...
bn=100

DD...

n = 1
block[0] = 100

...

CS3210 - Spring 2017
35 / 45



Step3: overwriting the data block

superblock data blocks
logheader

log

... n = 1
block[LOGSIZE]

AA...AA...

n = 1
block[0] = 100

...

AA...
bn=100

n=1

CS3210 - Spring 2017
36 / 45



Step4: cleaning up the logheader

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

AA...

bn=100

AA...

n = 1
block[0] = 100

...

n = 0
block[0] = 0

n=0

CS3210 - Spring 2017
37 / 45



What if failed (say power-o! and
reboot)?

Does FS contain "AA.." (❶) or "BB.." (❷)?

Step1: writing to a log (❶/❷?)

Step2: flushing the logheader (❶/❷?)

Step3: overwriting the data block (❶/❷?)

Step4: cleaning up the logheader (❶/❷?)

CS3210 - Spring 2017
38 / 45



Step1: writing to a log

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=0

AA...

AA...
bn=100

DD...
...

CS3210 - Spring 2017
39 / 45



Step2: flushing the logheader

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

n=1

AA...

AA...
bn=100

DD...

n = 1
block[0] = 100

...

CS3210 - Spring 2017
40 / 45



Step3: overwriting the data block

superblock data blocks
logheader

log

... n = 1
block[LOGSIZE]

AA...AA...

n = 1
block[0] = 100

...

AA...
bn=100

n=1

CS3210 - Spring 2017
41 / 45



Step4: cleaning up the logheader?

superblock data blocks
logheader

log

... n = 0
block[LOGSIZE]

AA...

bn=100

AA...

n = 1
block[0] = 100

...

n = 0
block[0] = 0

n=0

CS3210 - Spring 2017
42 / 45



DEMO: dumplog.c
01    static void commit() {
02      if (log.lh.n > 0) {
03        write_log();     // Write modified blocks from cache to log
04        // Q1: panic("after writing to log!");
05        write_head();    // Write header to disk -- the real commit
06        // Q2: panic("after writing the loghead!");
07        install_trans(); // Now install writes to home locations
08        // Q3: panic("after the transaction!");
09        log.lh.n = 0;
10        write_head();    // Erase the transaction from the log
11        // Q4: panic("after cleaning the loghead!");
12      }
13    }

CS3210 - Spring 2017
43 / 45



A few complications
How to write larger data that doesn't fit to the log region?

How to handle concurrency?

How to avoid 2x writing (redundant)?

How to log partial data (changes on a few bits)?

CS3210 - Spring 2017
44 / 45



References
Intel Manual
UW CSE 451
OSPP
MIT 6.828
Wikipedia
The Internet
Previous charts from Taesoo Kim and Tim Andersen

CS3210 - Spring 2017
45 / 45

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

