
CS3210: Virtual Memory Applications
Kyle Harrigan

CS3210 - Spring 2017
1 / 44

Administrivia
(Feb 10) Lab 2 Due (This Friday!)

(Feb 16) Quiz #1. Lab1-2, Ch 0-2, Appendix A/B

Open book/laptop

No Internet

(Feb 20) Project Pre-Proposal Due (1 Page)

We will go over requirement next week

(Feb 24) Lab 3 (Part A) Due

We are investigating the inconsistent readvirt behavior. Hang tight, we
will do something reasonable for grading.

CS3210 - Spring 2017
2 / 44

Administrivia
(Feb 10) Lab 2 Due (This Friday!)

(Feb 16) Quiz #1. Lab1-2, Ch 0-2, Appendix A/B

Open book/laptop

No Internet

(Feb 20) Project Pre-Proposal Due (1 Page)

We will go over requirement next week

(Feb 24) Lab 3 (Part A) Due

We are investigating the inconsistent readvirt behavior. Hang tight, we
will do something reasonable for grading.

Questions?
CS3210 - Spring 2017

3 / 44

Recap: address translation

What are the advantanges of the address translation?

What are the disadvantanges of the address translation?

CS3210 - Spring 2017
4 / 44

Recap: page translation

CS3210 - Spring 2017
5 / 44

Recap: design trade-o�
We divide a 32 bit address into [dir=10|tbl=10|off=12]

[dir=00|tbl=20|off=12]?

[dir=10|tbl=00|off=22]?

[dir=05|tbl=15|off=12]?

[dir=15|tbl=05|off=12]?

What's "super page"? good or bad?

CS3210 - Spring 2017
6 / 44

Why is paging useful?
Primary purpose: isolation

Each process has its own address space

Benefits:

Memory utilization, fragmentation, sharing, etc.

Level-of-indirection

Provides kernel with opportunity to do cool stuff

CS3210 - Spring 2017
7 / 44

Lab2 Selected Topics
Function overview - Go through each function and explain a little about
what it is supposed to do

memlayout.h - Discuss virtual memory layout. We will reference this from
various slides in this section.

Discuss some pitfalls and misconceptions

CS3210 - Spring 2017
8 / 44

Function Overview (Part 1)
boot_alloc()
mem_init() (only up to the call to check_page_free_list(1))
page_init()
page_alloc()
page_free()

CS3210 - Spring 2017
9 / 44

Function Overview (Part 1)
boot_alloc()
mem_init() (only up to the call to check_page_free_list(1))
page_init()
page_alloc()
page_free()

boot_alloc: Initial physical memory allocator. Allocate continguous blocks of
physical memory, store in nextfree

CS3210 - Spring 2017
10 / 44

Function Overview (Part 1)
boot_alloc()
mem_init() (only up to the call to check_page_free_list(1))
page_init()
page_alloc()
page_free()

boot_alloc: Initial physical memory allocator. Allocate continguous blocks of
physical memory, store in nextfree

mem_init: Setup kernel address space (above UTOP)

CS3210 - Spring 2017
11 / 44

Function Overview (Part 1)
boot_alloc()
mem_init() (only up to the call to check_page_free_list(1))
page_init()
page_alloc()
page_free()

boot_alloc: Initial physical memory allocator. Allocate continguous blocks of
physical memory, store in nextfree

mem_init: Setup kernel address space (above UTOP)

page_init: Initialize pages structure and memory free list.

CS3210 - Spring 2017
12 / 44

Function Overview (Part 1)
boot_alloc()
mem_init() (only up to the call to check_page_free_list(1))
page_init()
page_alloc()
page_free()

boot_alloc: Initial physical memory allocator. Allocate continguous blocks of
physical memory, store in nextfree

mem_init: Setup kernel address space (above UTOP)

page_init: Initialize pages structure and memory free list.

page_alloc: Allocate a physical page, zero fill.

CS3210 - Spring 2017
13 / 44

Function Overview (Part 1)
boot_alloc()
mem_init() (only up to the call to check_page_free_list(1))
page_init()
page_alloc()
page_free()

boot_alloc: Initial physical memory allocator. Allocate continguous blocks of
physical memory, store in nextfree

mem_init: Setup kernel address space (above UTOP)

page_init: Initialize pages structure and memory free list.

page_alloc: Allocate a physical page, zero fill.

page_free: Free a page

CS3210 - Spring 2017
14 / 44

Function overview (Part 2)
pgdir_walk()
boot_map_region()
page_lookup()
page_remove()
page_insert()

CS3210 - Spring 2017
15 / 44

Function overview (Part 2)
pgdir_walk()
boot_map_region()
page_lookup()
page_remove()
page_insert()

pgdir_walk(): Walks the page directory. Given a linear address, return a page
table entry

CS3210 - Spring 2017
16 / 44

Function overview (Part 2)
pgdir_walk()
boot_map_region()
page_lookup()
page_remove()
page_insert()

pgdir_walk(): Walks the page directory. Given a linear address, return a page
table entry

boot_map_region(): Map [va, va+size] to [pa, pa+size] by creating a page table
entry, with particular permissions.

CS3210 - Spring 2017
17 / 44

Function overview (Part 2)
pgdir_walk()
boot_map_region()
page_lookup()
page_remove()
page_insert()

pgdir_walk(): Walks the page directory. Given a linear address, return a page
table entry

boot_map_region(): Map [va, va+size] to [pa, pa+size] by creating a page table
entry, with particular permissions.

page_lookup(): Return page mapped at va, or NULL if no page mapped.

CS3210 - Spring 2017
18 / 44

Function overview (Part 2)
pgdir_walk()
boot_map_region()
page_lookup()
page_remove()
page_insert()

pgdir_walk(): Walks the page directory. Given a linear address, return a page
table entry

boot_map_region(): Map [va, va+size] to [pa, pa+size] by creating a page table
entry, with particular permissions.

page_lookup(): Return page mapped at va, or NULL if no page mapped.

page_remove(): Unmap page at virtual address va

CS3210 - Spring 2017
19 / 44

Function overview (Part 2)
pgdir_walk()
boot_map_region()
page_lookup()
page_remove()
page_insert()

pgdir_walk(): Walks the page directory. Given a linear address, return a page
table entry

boot_map_region(): Map [va, va+size] to [pa, pa+size] by creating a page table
entry, with particular permissions.

page_lookup(): Return page mapped at va, or NULL if no page mapped.

page_remove(): Unmap page at virtual address va

page_insert(): Map the physical page 'pp' at virtual address 'va'

CS3210 - Spring 2017
20 / 44

CS3210 - Spring 2017
21 / 44

Other pitfalls and misconceptions
The MMU is being "bypassed" or "tricked" in certain situations.

CS3210 - Spring 2017
22 / 44

Other pitfalls and misconceptions
The MMU is being "bypassed" or "tricked" in certain situations.

Nope! Once we turned paging on, we have to have a page directory
which determines the mapping.

CS3210 - Spring 2017
23 / 44

Other pitfalls and misconceptions
The MMU is being "bypassed" or "tricked" in certain situations.

Nope! Once we turned paging on, we have to have a page directory
which determines the mapping.

Remember, very early on we map 4MB of memory from [KERNBASE,
KERNBASE+4MB) to [0, 4MB]. This means there is a trivial mapping we can
use to help us figure out what the physical address is for certain variables.

CS3210 - Spring 2017
24 / 44

Other pitfalls and misconceptions
The MMU is being "bypassed" or "tricked" in certain situations.

Nope! Once we turned paging on, we have to have a page directory
which determines the mapping.

Remember, very early on we map 4MB of memory from [KERNBASE,
KERNBASE+4MB) to [0, 4MB]. This means there is a trivial mapping we can
use to help us figure out what the physical address is for certain variables.

The kernel can access memory below KERNBASE using addresses less
than 0xf0000000?

CS3210 - Spring 2017
25 / 44

Other pitfalls and misconceptions
The MMU is being "bypassed" or "tricked" in certain situations.

Nope! Once we turned paging on, we have to have a page directory
which determines the mapping.

Remember, very early on we map 4MB of memory from [KERNBASE,
KERNBASE+4MB) to [0, 4MB]. This means there is a trivial mapping we can
use to help us figure out what the physical address is for certain variables.

The kernel can access memory below KERNBASE using addresses less
than 0xf0000000?

Nope! The kernel can only use kernel virtual addresses (0xf0000000).
To the extent it needs to access memory elsewhere, there must be
page table entries to make this happen.

CS3210 - Spring 2017
26 / 44

Today: potential applications
Kernel tricks (e.g., one zero-filled page)

Faster system calls (e.g., copy-on-write fork)

New features (e.g., memory-mapped files)

Project ideas?

CS3210 - Spring 2017
27 / 44

Virtual memory recap
CPU asks OS to set up a data structure for VA → PA

per-process page table; flags (P/W/U/…)

switch page table with process

JOS: inc/memlayout.h

xv6

struct proc in proc.h

scheduler() → switchuvm(p) → lcr3(v2p(p→pgdir))

CS3210 - Spring 2017
28 / 44

Virtual memory recap
Linux

cat /proc/iomem

cat /proc/self/map (or replace self with a PID)

are these physical or virtual addresses

“All problems in computer science can be solved by another level of
indirection”

CS3210 - Spring 2017
29 / 44

Code: paging in xv6 (once more)
entry() in entry.S

kinit1() in main.c

kvmalloc() in main.c

$ cat /proc/iomem
00000000-00000fff : reserved
00001000-0009cfff : System RAM
0009d000-0009ffff : reserved
...

CS3210 - Spring 2017
30 / 44

The �rst address space in xv6
 +------------------+ <= 0xFFFFFFFF
 | |
 | free memory |
 ++------------------+
 / | kernel text/data | (kernel)
 / +------------------+ <= 0x80100000
 + | BIOS |
 physical mem / ++------------------+ <= 0x80000000
 / / | heap | (KERNBASE)
+------------------+ | +------------------+
| kernel text/data | + | stack |
+------------------+ / +------------------+
| BIOS |/ | user text/data | (initcode)
+------------------+ +------------------+ <= 0x00000000

CS3210 - Spring 2017
31 / 44

Protection: preventing NULL dereference
What's a NULL dereference? how serious? in xv6? (Linux exploit)

NULL pointer dereference exception

How would you implement this for Java, say obj=>field

Trick: put a non-mapped page at VA zero

Useful for catching program bugs

Limitations?

CS3210 - Spring 2017
32 / 44

https://blogs.oracle.com/ksplice/entry/much_ado_about_null_exploiting1

Protection: preventing stack over�ow
What's stack overflow? how serious? in xv6? (check cs6265!)

"Toyota's major stack mistakes" (see Michael Barr's Bookout v. Toyota)

Trick: put a non-mapped page right below user stack

JOS: inc/memlayout.h

 UTOP,UENVS -----=> +------------------------------+ 0xeec00000
 UXSTACKTOP -/ | User Exception Stack | RW/RW PGSIZE
 +------------------------------+ 0xeebff000
 | Empty Memory (*) | --/-- PGSIZE
 USTACKTOP --=> +------------------------------+ 0xeebfe000
 | Normal User Stack | RW/RW PGSIZE
 +------------------------------+ 0xeebfd000

CS3210 - Spring 2017
33 / 44

https://tc.gtisc.gatech.edu/cs6265/2015/cal.html
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

Feature: "virtual" memory
Can we run an app. requiring > 2GB in xv6?

What about an app. requiring > 1GB on a machine with 512MB?

CS3210 - Spring 2017
34 / 44

Feature: "virtual" memory
Applications often need more memory than physical memory

Early days: two floppy drives

Strawman: applications store part of state to disk and load back later

Hard to write applications

Virtual memory: offer the illusion of a large, continuous memory

Swap space: OS pages out some pages to disk transparently

Distributed shared memory: access other machines' memory across
network

CS3210 - Spring 2017
35 / 44

Feature: "virtual" memory
$ free
 total used free shared buff/cache available
Mem: 19G 5.1G 424M 1.4G 13G 12G
Swap: 0B 0B 0B

CS3210 - Spring 2017
36 / 44

Feature: memory-mapped �les
What's benefit of having open(), read(), write()?

mmap(): map files, read/write files like memory

Simple programming interface, memory read/write

Avoid data copying: e.g., send an mmaped file to network

compare to using read/write

no data transfer from kernel to user

When to page-in/page-out content?

CS3210 - Spring 2017
37 / 44

Feature: single zero page
calloc()? memset(buf, 0, buflen)?

Often need to allocate a page with zeros to start with

Trick: keep one zero page for all such pages

What if one process writes to the page?

CS3210 - Spring 2017
38 / 44

Feature: copy-on-write (CoW) fork (Lab
4)

What's fork()? and what happens when forking?

Observation: child and parent share most of the data

mark pages as copy-on-write

make a copy on page fault

Other sharing

multiple guest OSes running inside the same hypervisor

shared objects: .so/.dll files

CS3210 - Spring 2017
39 / 44

Feature: virtual linear page tables
How big is the page table if we have a single level (4KB pages)?

How to make all page tables show up on our address space?

CS3210 - Spring 2017
40 / 44

Feature: virtual linear page tables
uvpt[n] gives the PTE of page n

Self mapping: set one PDE to point to the page directory

CPU walks the tree as usual, but ends up in one level up

CS3210 - Spring 2017
41 / 44

Feature: virtual linear page tables

CS3210 - Spring 2017
42 / 44

Next tutorial
Lazy allocation

Grow stack on demand

CS3210 - Spring 2017
43 / 44

References
Intel Manual
UW CSE 451
OSPP
MIT 6.828
Wikipedia
The Internet

CS3210 - Spring 2017
44 / 44

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

