
CS3210: Interrupts
Dr. Tim Andersen

CS3210 - Spring 2017
1 / 34

Administrivia
Quiz 1 on Thursday, 2/16.

Final Project Pre-Proposal due 2/20.

Lab 3 Part A due 2/24 (Part B due the following week).

CS3210 - Spring 2017
2 / 34

Quiz 1
80 minutes
Open notes and laptop, NO internet
Hand Written (no electronic submissions but you may be asked to run
code or shell commands)
Covers:

Lab 1-2, Chapter 0-2, Appendix A/B
Lectures up to and including Lecture 6
Tutorials up to and including Tutorial 4

Be sure to understand the following:
Boot up sequence
Segmentation and Isolation
Shells and OS organization (syscalls, fork, pipe, FDs, etc.)
Virtual memory (including x86 architecture)
C coding
x86 assembly that has been used in labs, lectures, and tutorials so-far
Calling conventions (stack frames, etc.)

Old MIT 6.828 quizzes (which are the same format) are linked from
CS3210 website's references (at the bottom)

CS3210 - Spring 2017
3 / 34

Interrupt
An interrupt informs the CPU that a service is needed

Sources of interrupts

Internal faults: divide by zero, overflow
User software
Hardware
Reset

Def: An event external to the currently executing process that causes a change
in the normal flow of instruction execution; usually generated by hardware
devices external to the CPU.*

CS3210 - Spring 2017

* "Design and Implementation of the FreeBSD Operating System", Glossary

4 / 34

Why Interrupts?
People can't use a CPU without things attached to it

Keyboard, mouse, screen, disk drives, network cards, etc.

Also want to have the ability to stop a running program when it messes
something up and clean up.

Devices need CPU services at unpredictable times.

Want the CPU busy doing useful work between events but also stop what
it is doing and service those events in a timely manner.

CS3210 - Spring 2017
5 / 34

Polling?
Have the CPU periodically check each device to see if it needs attention

CS3210 - Spring 2017
6 / 34

Polling?
Have the CPU periodically check each device to see if it needs attention

Inefficient if events are on a slow timescale
If events happen rapidly, can be more efficient.

Polling is like checking your phone every few seconds to see if you have a
message.

Interrupts is like waiting for your phone to play a sound when you have a
message

CS3210 - Spring 2017
7 / 34

x86 Exceptions and Interrupts
Every Exception/Interrupt type is assigned a number

its vector

When an interrupt occurs, the vector determines what code is invoked to
handle the interrupt

JOS example:

vector 14 -> page fault handler
vector 32 -> clock handler -> scheduler

CS3210 - Spring 2017
8 / 34

Hardware Interrupts
Non-Maskable Interrupts

Never ignored, e.g., power failure, memory error
In x86, vector 2, prevents other interrupts from executing.

INTR Maskable

Ignored when [[IF]] in EFLAGS is 0
Enabling/disabling:

- `sti`: set interrupt
- `cli`: clear interrupt

INTA
Interrupt acknowledgement

CS3210 - Spring 2017
9 / 34

PIC: Programmable Interrupt Controller
(8259A)

Has 16 wires to devices (IRQ0-IRQ16)

Can be programmed to map IRQ0-15 -> vector number

Vector number is signaled over INTR line

In JOS/lab4

vector <- (IRQ# + OFFSET)

CS3210 - Spring 2017
10 / 34

PIC Diagram

CS3210 - Spring 2017
11 / 34

"Software" interrupt: INT
Intentionally interrupts

x86 provides the INT instruction
Invokes the interrupt handler for the vector (0-255)
JOS: INT 0x30 for system calls

xv6: INT 0x40 for system calls

Entering: int N
Exiting: iret

CS3210 - Spring 2017
12 / 34

The INT instruction
The INT instruction has the following steps:

decide the vector number, in this case it's the 0x40 in int 0x40
fetch the interrupt descriptor for vector 0x40 from the IDT. The CPU
finds it by taking the 0x40'th 8-byte entry starting at the physical
address that the IDTR CPU register points to.
check that CPL <= DPL in the descriptor (but only if INT instruction).
save ESP and SS in a CPU-internal register (but only if target segment
selector's PL < CPL).
load SS and ESP from TSS ("")
push user SS ("")
push user ESP ("")
push user EFLAGS
push user CS
push user EIP
clear some EFLAGS bits
set CS and EIP from IDT descriptor's segment selector and offset

CS3210 - Spring 2017
13 / 34

Example: entering (usys.S)
vectorN -> alltraps -> trap() -> syscall()

01 #define SYSCALL(name) \
02 .globl name; \
03 name: \
04 movl $SYS_ ## name, %eax; \
05 int $T_SYSCALL; \
06 ret
07
08 SYSCALL(fork)
09 SYSCALL(exit)
10 ...

CS3210 - Spring 2017
14 / 34

Example: exiting (trapasm.S)
syscall() -> trapret() -> iret

01 .globl trapret
02 trapret:
03 popal
04 popl %gs
05 popl %fs
06 popl %es
07 popl %ds
08 addl $0x8, %esp # trapno and errcode
09 iret

CS3210 - Spring 2017
15 / 34

Interrupt Vector (vector.S)
int 0 -> vector0

01 # handlers
02 vector0:
03 pushl $0
04 pushl $0
05 jmp alltraps
06 ...
07
08 # vector table
09 vectors:
10 .long vector0
11 .long vector1
12 ...

CS3210 - Spring 2017
16 / 34

Interrupt Vector
Some vectors need to push 0 for their error code and others do not

01 vector0:
02 pushl $0 ; error code
03 pushl $0 ; #vector
04 jmp alltraps
05
06 ...
07 vector8:
08 pushl $8 ; #vector
09 jmp alltraps
10 ...

CS3210 - Spring 2017
17 / 34

Trap Handling DEMO
int 0x40 entered the kernel at vector64, generated by vectors.pl. b
vector64
What is the current CPL? How was it set?

Could the user abuse the INT instruction to exercise privilege or
break the kernel?

x/6x $esp in order to see what int put on the stack.
What stack is being used?

x/3i vector64
vector64 pushes a few items on the stack and then jumps to alltraps.
Why not have vector 64 in the IDT point directly to alltraps?

Single-step alltraps until pushl %esp, then x/19x $esp.
Compare with struct trapframe (x86.h)

At the start of trap(), what is tf->trapno?
How was it set?

CS3210 - Spring 2017
18 / 34

Trap Return
syscall() returns to trap(), and trap() returns to alltraps

b trap.c:44 (instruction after call syscall).

print *tf
What is different and why?
si until popal.
x/19x $esp to see the trap frame again.

single-step until iret, x/5x $esp, single-step

into user space. Print the registers and stack.

CS3210 - Spring 2017
19 / 34

Fault Handling Traps
What would happen if a user program divided by zero? - What if kernel
code divided by zero?
In Unix, traps often get translated into signals to the process.

Some traps, though, are (partially) handled internally by the kernel --
which ones?

Some traps push an extra error code onto the stack (typically containing
the segment descriptor that caused a fault).

But this error code isn't pushed by the INT instruction.
Can the user confuse the kernel by invoking INT 0xc (or any other
vector that usually pushes an error code)? Why not?

CS3210 - Spring 2017
20 / 34

JOS Trap Frame
struct Trapframe {
 struct PushRegs tf_regs;
 uint16_t tf_es;
 uint16_t tf_padding1;
 uint16_t tf_ds;
 uint16_t tf_padding2;
 uint32_t tf_trapno;
 /* below here defined by x86 hardware */
 uint32_t tf_err;
 uintptr_t tf_eip;
 uint16_t tf_cs;
 uint16_t tf_padding3;
 uint32_t tf_eflags;
 /* below here only when crossing rings, such as from user to kernel */
 uintptr_t tf_esp;
 uint16_t tf_ss;
 uint16_t tf_padding4;
} __attribute__((packed));

CS3210 - Spring 2017
21 / 34

Real-mode
For any INT n, n is multiplied by 4

In the address “4n” the offset address the handler is found

Example:Intel has set aside INT 2 for the NMI interrupt

Whenever the NMI pin is activated, the CPU jumps to physical
memory location 00008 to fetch the CS:IP of the interrupt service
routine associated with the NMI.

In protected mode, this scheme is replaced by the Interrupt Descriptor
Table

CS3210 - Spring 2017
22 / 34

Interrupt Descriptor Table
IDT

Table of 256 8-byte entries (similar to GDT)
In JOS: Each specifies a protected entry-point into the kernel
Located anywhere in memory

IDTR register

Stores current IDT

lidt instruction

Loads IDTR with address and size of the IDT
Takes in a linear address

CS3210 - Spring 2017
23 / 34

Interrupt Descriptor Table Diagram

CS3210 - Spring 2017
24 / 34

Initializing IDT in xv6 (trap.c)
main() -> tvinit()

01 void tvinit(void)
02 {
03 int i;
04 for (i = 0; i < 256; i++)
05 SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);
06
07 // Q?
08 SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, \
09 vectors[T_SYSCALL], DPL_USER);
10 }

CS3210 - Spring 2017
25 / 34

Initializing IDT in xv6 (trap.c)
main() -> idtinit()

01 void
02 idtinit(void)
03 {
04 lidt(idt, sizeof(idt));
05 }

CS3210 - Spring 2017
26 / 34

Interrupt Descriptor Entry
Offset is a 32-bit value split into two parts pointing to the destination IP or
EIP

Segment selector points to the destination CS in the kernel

Present flag indicates that this is a valid entry

Descriptor Privilege Level indicates the minimum privilege level of the
caller to prevent users from calling hardware interrupts directly

Size of gate can be 32 bits or 16 bits

Gate can be interrupt (int instruction) or trap gate

CS3210 - Spring 2017
27 / 34

Interrupt Descriptor Entry

CS3210 - Spring 2017
28 / 34

Interrupt Descriptor Table

CS3210 - Spring 2017
29 / 34

Prede�ned Interrupt Vectors
0: Divide Error
1: Debug Exception
2: Non-Maskable Interrupt
3: Breakpoint Exception (e.g., int3)
4: Invalid Opcode
13: General Protection Fault
14: Page Fault
18: Machine Check (abort)
32-255: User Defined Interrupts

CS3210 - Spring 2017
30 / 34

Software Exceptions
Processor detects an error condition while executing

E.g., divl %eax, %eax

Divide by zero if eax = 0

E.g., movl %ebx, (%eax)

Page fault or seg violation if eax is unmapped

E.g., jmp $BAD_JMP

General Protection Fault (jmpd out of CS)

CS3210 - Spring 2017
31 / 34

Example: Divide Error
01 int main(int argc, char **argv)
02 {
03 int x, y, z;
04 if (argc < 3)
05 exit();
06
07 x = atoi(argv[1]);
08 y = atoi(argv[2]);
09
09 // Q?
10 z = x / y;
11 printf(1, "%d / %d = %d\n", x, y, z);
12 exit();
13 }

CS3210 - Spring 2017
32 / 34

Example: 0/0 = ?

CS3210 - Spring 2017

0:00 / 0:20

33 / 34

Let's implement, 0/0 = 0!
Q: plan?

$ div 0 0
0 / 0 = 0
$

CS3210 - Spring 2017
34 / 34

