
CS3210: Processes and Switching
Kyle Harrigan

CS3210 - Spring 2017
1 / 41

Administrivia
(Mar 7) Team Proposal Day (just slides, target 3-5 min/team)

Problem statement

Idea

Demo plan (aka evaluation)

Timeline

DUEDUE submit slides (as a team) by 12 pm, Mar 7

CS3210 - Spring 2017
2 / 41

General comments on pre-proposals
Many too short, some were very good

What (can) drive(s) a project?

Identified need / shortfall (not solutions looking for problems)

New approach (optimize, refine)

Curiosity / proof of concept (can we do it?)

A sensible project flow:

Identify problem, propose potential solutions

Refine and choose approch

Implement, then document

CS3210 - Spring 2017
3 / 41

Heilmeier's Catechism
What are you trying to do? Articulate your objectives using absolutely no
jargon.

How is it done today, and what are the limits of current practice?

What's new in your approach and why do you think it will be successful?

Who cares? If you're successful, what difference will it make? What are
the risks and the payoffs?

How many people do you need? How long will it take? What are
themilestones to check for success?

CS3210 - Spring 2017
4 / 41

Heilmeier Credentials
Why listen to Heilmeier?

Pioneering contributor to liquid crystal display (LCD)

RCA labs, DARPA (director), TI, Bellcore/Telcordia, others

Notable awards (too many to list on slide)

IEEE Founders Medal

National Medal of Science

IRI Medal

IEEE Medal of Honor

John Fritz Medal

Kyoto Price

CS3210 - Spring 2017
5 / 41

Other thoughts
Plan your presentation in advance

Who will say what

Smooth transitions

Don't read the slides to us

Pictures and diagrams are good

Enthusiasm can go a long way

CS3210 - Spring 2017
6 / 41

Summary of last lectures
Power-on -> BIOS -> bootloader -> kernel -> user programsuser programs

OS: abstraction, multiplexingmultiplexing, isolation, sharing

Design: monolithic (xv6) vs. micro kernels (jos)

Abstraction: processprocess, system calls

Isolation mechanisms: CPL, segmentation, paging

Multiprocessors and Locking, Threads and Spinlocks

CS3210 - Spring 2017
7 / 41

Today's plan
A few more notes on locking in xv6

About process

For multiplexing (e.g., more processes than CPUs)

In particular, switching and scheduling

CS3210 - Spring 2017
8 / 41

Locks
Mutual exclusionMutual exclusion: only one core can hold a given lock

concurrent access to the same memory location, at least one write

example: acquire(l); x = x + 1; release(l);

CS3210 - Spring 2017
9 / 41

Locks
Mutual exclusionMutual exclusion: only one core can hold a given lock

concurrent access to the same memory location, at least one write

example: acquire(l); x = x + 1; release(l);

Example: why do we need a lock?

00 struct file* filealloc(void) {
01 struct file *f;
02
03 acquire(&ftable.lock);
04 for(f = ftable.file; f < ftable.file + NFILE; f++){
05 if(f=>ref == 0){
06 f=>ref = 1;
07 release(&ftable.lock);
08 return f;
09 }
10 }
11 release(&ftable.lock);
12 return 0;
13 }

CS3210 - Spring 2017
10 / 41

Locks
Mutual exclusionMutual exclusion: only one core can hold a given lock

concurrent access to the same memory location, at least one write

example: acquire(l); x = x + 1; release(l);

Atomic executionAtomic execution: hide intermediate state

another example: transfer money from account A to B

put(a + 100) and put(b - 100) must be both effective, or neither

CS3210 - Spring 2017
11 / 41

A di!erent way to think about locks
"In computer science, an invariant is a condition that can be relied upon
to be true during execution of a program, or during some portion of it.
It is a logical assertion that is held to always be true during a
certain phase of execution. For example, a loop invariant is a condition
that is true at the beginning and end of every execution of a loop"

source: wikipedia

Locks help operations maintain invariantsinvariants on a data structure

assume the invariants are true at start of operation

operation uses locks to hide temporary violation of invariants

operation restores invariants before releasing locks

Q: put(a + 100) and put(b - 100)?

CS3210 - Spring 2017
12 / 41

Strawman: locking
01 struct lock { int locked; };
02
03 void acquire(struct lock *l) {
04 for (;;) {
05 if (l=>locked == 0) { // A: test
06 l=>locked = 1; // B: set
07 return;
08 }
09 }
10 }
11
12 void release(struct lock *l) {
13 l=>locked = 0;
14 }

CS3210 - Spring 2017
13 / 41

Problem: concurrent executions on line
05
 // process A // process B
 if (l=>locked == 0) if (l=>locked == 0)
 l=>locked = 1; l=>locked = 1;

Recall:

$ while true; do ./count 2 10 | grep 10 ; done
cpu = 2, count = 10
...

CS3210 - Spring 2017
14 / 41

Relying on an atomic operation
01 struct lock { int locked; };
02
03 void acquire(struct lock *l) {
04 for (;;) {
05 if (xchg(&l=>locked, 1) == 0)
06 return;
07 }
08 }
09
10 void release(struct lock *l) {
11 // Q?
12 xchg(&l=>locked, 0);
13 }

CS3210 - Spring 2017
15 / 41

Spinlock in xv6
Pretty much same, but provide debugging info

01 struct spinlock {
02 uint locked; // Is the lock held?
03
04 // Q?
05 char *name; // Name of lock.
06 struct cpu *cpu; // The cpu holding the lock.
07 uint pcs[10]; // The call stack (an array of program counters)
08 // that locked the lock.
09 };

CS3210 - Spring 2017
16 / 41

acquire() in xv6
01 void acquire(struct spinlock *lk) {
02 // Q1?
03 pushcli();
04 // Q2?
05 if (holding(lk))
06 panic("acquire");
07
08 while (xchg(&lk=>locked, 1) != 0)
09 ;
10
11 lk=>cpu = cpu;
12 getcallerpcs(&lk, lk=>pcs);
13 }
~

CS3210 - Spring 2017
17 / 41

release() in xv6
01 void release(struct spinlock *lk) {
02 // Q1?
03 if (!holding(lk))
04 panic("release");
05
06 // Q2?
07 lk=>pcs[0] = 0;
08 lk=>cpu = 0;
09
10 xchg(&lk=>locked, 0);
11
12 // Q3?
13 popcli();
14 }

CS3210 - Spring 2017
18 / 41

Why spinlocks?
Don't they waste CPU while waiting?

Why not give up the CPU and switch to another process, let it run?

What if holding thread needs to run; shouldn't you yield CPU?

CS3210 - Spring 2017
19 / 41

Spinlock guidelines
hold for very short times

don't yield CPU while holding lock

(un)fairness issues: FIFO ordering?

NOTENOTE "blocking" locks for longer critical sections

waiting threads yield the CPU

but overheads are typically higher (later)

CS3210 - Spring 2017
20 / 41

Problem 1: deadlock (e.g., double
acquire)

Q: what happens in xv6?

01 struct spinlock lk;
02 initlock(&lk, "test lock");
03 acquire(&lk);
04 acquire(&lk);

CS3210 - Spring 2017
21 / 41

Problem 2: interrupt (preemption)
Race in iderw() (ide.c)

sti() after acquire()

cli() before release()

CS3210 - Spring 2017
22 / 41

iderw()
What goes wrong with adding sti/cli in iderw?

What ensures atomicity between processors

What ensures atomicity within a single processor?

CS3210 - Spring 2017
23 / 41

What about racing in file.c
Race in filealloc() (file.c)

Q: ftable.lock?

sti() after acquire()

cli() before release()

CS3210 - Spring 2017
24 / 41

filealloc()
Could the disk interrupt handler run while interrupts are enabled?

Does any any interrupt handler grab the ftable.lock?

What interrupt could cause trouble?

CS3210 - Spring 2017
25 / 41

Scheduling - Motivation
Why are we here?

OS typically has more processes than processors

This implies a time-sharing mechanism

You will implement basic scheduler (round-robin) in Lab 4

Cooperative -> Preemptive

CS3210 - Spring 2017
26 / 41

Scheduling
Which process to run?

Pick one from a set of RUNNABLE processes (or env in jos)

What have you seen from lab?

(next lecture) Switching/scheduling in detail

CS3210 - Spring 2017
27 / 41

Scheduling: design space
Preemptive vs. cooperative?

Global queue vs. per-CPU queue?

CS3210 - Spring 2017
28 / 41

Scheduling: design space
Scalability: w/ many runnable processes?

Granularity (timeslice, quantum): 10ms vs 100ms? (dynamic? tickless?)

Fairness: time quota, epoch (inversion? group?)

QoS: priority? (e.g., nice)

Constraints: realtime, deadlines (e.g., airplane)

etc: resource starvation, performance consolidation (e.g., cloud)

CS3210 - Spring 2017
29 / 41

Scheduling: di"cult in practice
No perfect/universal solution/policy

Contradicting goals:

maximizing throughput vs. minimizing latency

minimizing response time vs. maximizing scalability

maximizing fairness vs. maximizing scalability

CS3210 - Spring 2017
30 / 41

Example: round-robin scheduling

Simple: assign fixed time unit per process

Starvation-free (no priority)

CS3210 - Spring 2017
31 / 41

Complexity in real scheduling algorithms
Linux?

CS3210 - Spring 2017
32 / 41

Complexity in real scheduling algorithms
Linux

kernel/sched/*.c: 17k LoC with 7k lines of comments
vs. your RR in jos? 10 LoC?

01 for (j = 1; j <= NENV; j++) {
02 k = (j + i) % NENV;
03 if (envs[k].env_status == ENV_RUNNABLE)
04 env_run(&envs[k]);
05 }

CS3210 - Spring 2017
33 / 41

Summary (Wikipedia)

CS3210 - Spring 2017
34 / 41

Example: available options in Linux
sysctl -A | grep "sched" | grep -v "domain"
kernel.sched_cfs_bandwidth_slice_us = 5000
kernel.sched_child_runs_first = 0
kernel.sched_compat_yield = 0
kernel.sched_latency_ns = 6000000
kernel.sched_migration_cost_ns = 500000
kernel.sched_min_granularity_ns = 2000000
kernel.sched_nr_migrate = 32
kernel.sched_rr_timeslice_ms = 25
kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_shares_window_ns = 10000000
kernel.sched_time_avg_ms = 1000
kernel.sched_tunable_scaling = 1
kernel.sched_wakeup_granularity_ns = 2500000
...

$ less /proc/sched_debug
$ less /proc/[pid]/sched

To tinker:

$ sysctl variable=value

CS3210 - Spring 2017
35 / 41

Characterizing processes
CPU-bound vs IO-bound

Interactive processes (e.g., vim, emacs)

Batch processes (e.g., cronjob)

Real-time processes (e.g., audio/video players)

CS3210 - Spring 2017
36 / 41

Scheduling policies in Linux
SCHED_FIFOSCHED_FIFO: first in, first out, real time processes

SCHED_RRSCHED_RR: round robin real time processes

SCHED_OTHERSCHED_OTHER: normal time/schedule sharing (default)

SCHED_BATCHSCHED_BATCH: CPU intensive processes

SCHED_IDLESCHED_IDLE: Very low prioritized processes

CS3210 - Spring 2017
37 / 41

Example
Q: count.c?

$ sudo ./count 3 1000000000
8522: runs
8524: runs
8523: runs
8523: 2.05 sec
8522: 2.34 sec
8524: 2.49 sec

CS3210 - Spring 2017
38 / 41

Example: available policies
$ chrt -m
SCHED_OTHER min/max priority : 0/0
SCHED_FIFO min/max priority : 1/99
SCHED_RR min/max priority : 1/99
SCHED_BATCH min/max priority : 0/0
SCHED_IDLE min/max priority : 0/0

CS3210 - Spring 2017
39 / 41

Example: FIFO (real time scheduling)
$ sudo ./count 10 1000000000 "chrt -f -p 99"
...

CS3210 - Spring 2017
40 / 41

References
Intel Manual
UW CSE 451
OSPP
MIT 6.828
Wikipedia
The Internet

CS3210 - Spring 2017
41 / 41

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

