(53210: Coordination (Sleep and
Wakeup)

Tim Andersen

Administrivia

e Quiz 1 Handed Out (Pick up if you haven't received yours)
e Lab 4 Part A due March 10th

2/41

$3210 - Spring 2017

Today's plan

e Context switching (i.e., swtch and sched) in detail
e Sequence coordination

o xv6: sleep & wakeup
o Challenges

o Lost wakeup problem

o Signals

3/41

$3210 - Spring 2017

Multiplexing

e Sleep and wakeup mechanism switches when a process
o Waits for a device or pipe I/O to complete
o Waits for a child to exit
o Waits in the sleep system call

e Xv6 periodically forces a switch

» Creates the illusion that each process has its own CPU

4/41

$3210 - Spring 2017

Implementation challenges

e Q: How to switch from one process to another?
o A: Context switching
e Q: How to make context switching transparent?
o A: Timer interrupts
» Q: How to switch among processes running concurrently?
o A: Locking
» Q: How to coordinate processes?
o A: Sleep on events (e.g., pipe, child exit)

> /41

$3210 - Spring 2017

Two Rinds of context switch

1. From a process's kernel thread to CPU scheduler thread
2. From the scheduler thread to a process's kernel thread.

e Xv6 never directly switches from user-space to user-space
o user-kernel transition (system call or interrupt)
o context switch to scheduler

o context switch to new process's kernel thread
o trap return

6/41
$3210 - Spring 2017

Big picture: switching

user
space
\

\
saye _\-,
swtch swtch rgstore
kernel —> —>
>pace kstack kstack kstack
shell scheduler cat
Kernel

7 /41

CS3210 - Spring 2017

Context switching

« Every xv6 process has its own kernel stack and register set
o Every CPU has its own scheduler thread
e Switching from one thread to another

o Save and load CPU registers, including %esp, %eip.

8/41

$3210 - Spring 2017

swtch

void swtch(struct context**, struct context*);

» Doesn't know about threads just saves and loads sets of registers called
contexts

 When time to give up CPU, kernel thread calls swtch to save itself and
return to scheduler context

e Contextis a struct context*, stored on the kernel stack

» CPU pushed onto stack and saves stack pointer to *old

» Copies new to %esp, pops previous registers, and returns

9 /41

$3210 - Spring 2017

Switching overview: CPU perspective

CPU1
schedule()
| shared
‘ proc
CPUO CPU1 shell cat
kstack kstack [0]][1] proc[1].kstack | proc[2].kstack
(entry.S) (main.c) (proc.h) (proc.h)
A A
CPU(A)":;G ptable.lock ' s
Ql: ring? SWtCh() __
—>{ trapret o
Q2: ring? esp?
@ g

10/41
$3210 - Spring 2017

yield

« At the end of each interrupt, trap can call yield
e yield -> sched -> swtch
e Switches from proc=>context to cpu=>scheduler

11 /41
$3210 - Spring 2017

swtch: Detailed Look

« Loads its arguments off the stack into ¥eax and %edx before it loses its
arguments when it changes %esp
» Only callee-save registers saved
o %ebp, %ebx, %esi, %ebp, and %esp
o First four pushed, %esp saved as *old
» %eip was saved by the call instruction and is just above %ebp
« Moves pointer to new context into %esp
« Inverts sequence of steps to load context

12 /41
$3210 - Spring 2017

Switching overview: CPU perspective

shared
proc
CPUO CPU1 shell cat
kstack kstack [0]][1] proc[1].kstack | proc[2].kstack
(entry.S) (main.c) (proc.h) (proc.h)
x 7 2]
U o o pablelock .
schedule() e ..

13 /41
$3210 - Spring 2017

Show xv6 Code

e swtch(), scheduler(), sched()
e about ptable.lock

14 /41
$3210 - Spring 2017

Scheduling

e Process giving up the CPU must
o aquire ptable. lock
o release any other locks
o update its own state (e.g., RUNNABLE, SLEEPING)
o call sched
e yield, sleep, and exit all do these steps

15 /41
$3210 - Spring 2017

DEMO: sched

br sched

commands

p cpus[cpunum()].proc.pid
C

end

16 /41
$3210 - Spring 2017

ptable. lock

» Held across calls to swtch
» Caller holding lock passes control to switched to code
» Needed because process state and context must be kept invariant across
swtch
» Without lock, a different CPU might try to run a process after RUNNABLE
but before kernel stack switch.
o Result is two CPUs with same stack.

17 /41

$3210 - Spring 2017

sched and scheduler

Kernel thread always gives up in sched and switches to same location in

scheduler

Almost always switches to a process in sched.

Thread switches follow a simple pattern between sched and scheduler
o Coroutines

Exception is forkret when process is first scheduled

18 /41
$3210 - Spring 2017

Scheduler

» Loops over process table looking for RUNNABLE processes
» Finding one, sets current per-CPU process to proc
o Switches page table with switchuvm, marks as RUNNING, and calls swtch

19 /41
$3210 - Spring 2017

Sequence coordination

 How to arrange for threads to wait for each other to do
o e.g., wait for disk interrupt to complete
o e.g., wait for pipe readers to make space in pipe
o e.g., wait for child to exit
o e.g., wait for block to use

20 /41
$3210 - Spring 2017

Producer and Consumer Queue

e Queue allows one process to send a nonzero pointer to another process
For only one sender and one receiver on different CPUs.

Send loops until queue is empty then puts pointer p in the queue

Recv loops until the queue is non-empty and takes the pointer out

Both modify q=>ptr, but send only writes the pointer when zero

Recv only writes when nonzero, so no lost updates

21 /41
$3210 - Spring 2017

Strawman solution: spin

01 struct q { void *ptr; };

02

03 void* send(struct q *q, void *p) {
04 while(g=>ptr != 0)

05 5

06 q=>ptr = p;

07 }

08

09 void* recv(struct q *q) {
10 void *p;

11 while((p = g=>ptr) == 0)
12 ;

13 q=>ptr = 0;

14 return p;

15 }

22 /41
$3210 - Spring 2017

Strawman solution: spin

e Q: cpuO send(), cpul recv()?
e Q: cpul send(), cpul send()?
e Q: cpuOl recv(), cpul send()?
e Q: cpuOl recv(), cpul recv()?
e Q: problem?

23 /41
$3210 - Spring 2017

Better solution: primitives for
coordination

e Sleep & wakeup (xv6)
» Condition variables (e.g., pthread_cond)
e Barriers (next tutorial)

24 /41
$3210 - Spring 2017

Sleep & wakeup

e sleep(chan)
o sleeps on a "channel”, an address to name the condition we are
sleeping on
e wakeup(chan)
o wakeup wakes up all threads sleeping on chan
o this may wake up more than one thread

25 /41
$3210 - Spring 2017

Attempt 1: sleep & wakeup

01 void* send(struct q *q, void *p) {

02 while(g=>ptr != 0)

03 5

04 g=>ptr = p;

05 wakeup(q); /* Q? */

06 }

07

08 void* recv(struct q *q) {
09 void *p;

10 while((p = g=>ptr) == 0)
11 sleep(q); /* Q2 */
12 q=>ptr = 0;

13 return p;

14 }

26 /41
$3210 - Spring 2017

Strawman solution: spin

e Q: cpuO send(), cpul recv()?
e Q: cpul send(), cpul send()?
e Q: cpuOl recv(), cpul send()?
e Q: cpuOl recv(), cpul recv()?
e Q: problem? (hint: concurrently run while in send/recv)

27 /41

$3210 - Spring 2017

Lost wakeup problem

215 216 |
wait for wakeup forever
test sleep
recv S
Time
send -
206 207 204 205
store p wakeup test spin forever

28 /41
$3210 - Spring 2017

Attempt1: fixing the lost wakeup
problem

e Q: how to atomically run the code (checking and sleeping)?

10 while((p = g=>ptr) == 0)
11 sleep(q);

Attempt1: fixing the lost wakeup
problem

o Let's use a spinlock

struct q {
struct spinlock lock;
void *ptr;

%

Attempt1: fixing the lost wakeup
problem

01 void* send(struct q *q, void *p) {

02 acquire(&g=>1lock);

03 while(g=>ptr != 0)

04 ;

05 q=>ptr = p;

06 wakeup(q);

07 release(&g=>lock);

08 }

09

10 void* recv(struct q *q) {
11 void *p;

12 acquire(&qg=>lock);

13 while((p = g=>ptr) == 0)
14 sleep(q);

15 g=>ptr = 0;

16 release(&qg=>1lock);

17 return p;

18 }

31/41
$3210 - Spring 2017

Problems?

e Q: cpuO send(), cpul recv()?
e Q: cpul send(), cpul send()?
e Q: cpuOl recv(), cpul send()?
e Q: cpuOl recv(), cpul recv()?

32 /41
$3210 - Spring 2017

Attempt2: releasing the lock when
sleeping

01 void* send(struct q *q, void *p) {

02 acquire(&g=>1lock);

03 while(g=>ptr != 0)

04 ;

05 q=>ptr = p;

06 wakeup(q);

07 release(&g=>lock);

08 }

09

10 void* recv(struct q *q) {
11 void *p;

12 acquire(&qg=>lock);

13 while((p = g=>ptr) == 0)
14 sleep(q, &g=>lock);
15 g=>ptr = 0;

16 release(&qg=>1lock);

17 return p;

18 }

33/41
$3210 - Spring 2017

Problems?

e Q: cpuO send(), cpul recv()?
e Q: cpul send(), cpul send()?
e Q: cpuOl recv(), cpul send()?
e Q: cpuOl recv(), cpul recv()?
« We need a similar treatment for send() (i.e., sleep())

34 /41
$3210 - Spring 2017

Code

e sleep(), wakeup()
e about: ptable. lock

35 /41

$3210 - Spring 2017

Summary: sleep takes a lock as
argument

« Sleeper and wakeup acquires locks for shared data structure

e sleep() holds the lock until after it has ptable. lock

e Once it has ptable.lock, no wakeup can come in before it sets state to
sleeping -> no lost wakeup problem

e Requires that sleep takes a lock argument!

36 /41
$3210 - Spring 2017

(ase study: ide (blockio)

e Device I/0O is too slow to just spin (wait) for its competition
e bread(b) -> iderw(b)

o it waits (sleep) until the requests block is ready
e trap() -> ideintr()

o it notifies (wakeup) the waiter

37 /41

$3210 - Spring 2017

Example: iderw

e code: iderw() (sleeper), ideintr() (wakeup)
» Q: wakeup cannot get lock until sleeper is already to at sleep, why a loop
around sleep?

01 // Wait for request to finish.

02 while((b->flags & (B_VALID|B_DIRTY)) != B_VALID){
03 sleep(b, &idelock);

04 }

38 /41
$3210 - Spring 2017

Another example: pipe

 What is the race if sleep didn't take p->lock as argument?

39/41
$3210 - Spring 2017

Many primitives in literature to solve
lost-wakeup problem

e Counting wakeup&sleep calls in semaphores
» Passlocks as an extra argument in condition variables (as in sleep)

References

e Intel Manual
« UW CSE 451
e« OSPP

« MIT 6.828

» Wikipedia

e The Internet

41 /41
$3210 - Spring 2017

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

