
CS3210: Coordination (Sleep and
Wakeup)
Tim Andersen

CS3210 - Spring 2017
1 / 41

Administrivia
Quiz 1 Handed Out (Pick up if you haven't received yours)
Lab 4 Part A due March 10th

CS3210 - Spring 2017
2 / 41

Today's plan
Context switching (i.e., swtch and sched) in detail
Sequence coordination

xv6: sleep & wakeup
Challenges

Lost wakeup problem
Signals

CS3210 - Spring 2017
3 / 41

Multiplexing
Sleep and wakeup mechanism switches when a process

Waits for a device or pipe I/O to complete
Waits for a child to exit
Waits in the sleep system call

xv6 periodically forces a switch
Creates the illusion that each process has its own CPU

CS3210 - Spring 2017
4 / 41

Implementation challenges
Q: How to switch from one process to another?

A: Context switching
Q: How to make context switching transparent?

A: Timer interrupts
Q: How to switch among processes running concurrently?

A: Locking
Q: How to coordinate processes?

A: Sleep on events (e.g., pipe, child exit)

CS3210 - Spring 2017
5 / 41

Two kinds of context switch
1. From a process's kernel thread to CPU scheduler thread
2. From the scheduler thread to a process's kernel thread.

xv6 never directly switches from user-space to user-space
user-kernel transition (system call or interrupt)
context switch to scheduler
context switch to new process's kernel thread
trap return

CS3210 - Spring 2017
6 / 41

Big picture: switching

CS3210 - Spring 2017
7 / 41

Context switching
Every xv6 process has its own kernel stack and register set
Every CPU has its own scheduler thread
Switching from one thread to another

Save and load CPU registers, including %esp, %eip.

CS3210 - Spring 2017
8 / 41

swtch
void swtch(struct context**, struct context*);

Doesn't know about threads just saves and loads sets of registers called
contexts
When time to give up CPU, kernel thread calls swtch to save itself and
return to scheduler context
Context is a struct context*, stored on the kernel stack
CPU pushed onto stack and saves stack pointer to *old
Copies new to %esp, pops previous registers, and returns

CS3210 - Spring 2017
9 / 41

Switching overview: CPU perspective

CPU0
kstack
(entry.S)

CPU1
kstack
(main.c)

shell
proc[1].kstack

(proc.h)

cat
proc[2].kstack

(proc.h)

proc

[0] [1]

swtch()

trap

CPU0

CPU1

Q1: ring?

Q2: ring? esp?

trapret

schedule()

❶

❷

❸

shared

ptable.lock

CS3210 - Spring 2017
10 / 41

yield
At the end of each interrupt, trap can call yield
yield -> sched -> swtch
Switches from proc=>context to cpu=>scheduler

CS3210 - Spring 2017
11 / 41

swtch: Detailed Look
Loads its arguments off the stack into %eax and %edx before it loses its
arguments when it changes %esp
Only callee-save registers saved

%ebp, %ebx, %esi, %ebp, and %esp
First four pushed, %esp saved as *old

%eip was saved by the call instruction and is just above %ebp
Moves pointer to new context into %esp
Inverts sequence of steps to load context

CS3210 - Spring 2017
12 / 41

Switching overview: CPU perspective
CPU0
kstack
(entry.S)

CPU1
kstack
(main.c)

shell
proc[1].kstack

(proc.h)

cat
proc[2].kstack

(proc.h)

proc

[0] [1]

yield()

CPU0
❸

shared

ptable.lock❹

schedule() ❺
swtch()

CS3210 - Spring 2017
13 / 41

Show xv6 Code
swtch(), scheduler(), sched()
about ptable.lock

CS3210 - Spring 2017
14 / 41

Scheduling
Process giving up the CPU must

aquire ptable.lock
release any other locks
update its own state (e.g., RUNNABLE, SLEEPING)
call sched

yield, sleep, and exit all do these steps

CS3210 - Spring 2017
15 / 41

DEMO: sched
br sched
commands
p cpus[cpunum()].proc.pid
c
end

CS3210 - Spring 2017
16 / 41

ptable.lock
Held across calls to swtch
Caller holding lock passes control to switched to code
Needed because process state and context must be kept invariant across
swtch
Without lock, a different CPU might try to run a process after RUNNABLE
but before kernel stack switch.

Result is two CPUs with same stack.

CS3210 - Spring 2017
17 / 41

sched and scheduler
Kernel thread always gives up in sched and switches to same location in
scheduler
Almost always switches to a process in sched.
Thread switches follow a simple pattern between sched and scheduler

Coroutines
Exception is forkret when process is first scheduled

CS3210 - Spring 2017
18 / 41

Scheduler
Loops over process table looking for RUNNABLE processes
Finding one, sets current per-CPU process to proc
Switches page table with switchuvm, marks as RUNNING, and calls swtch

CS3210 - Spring 2017
19 / 41

Sequence coordination
How to arrange for threads to wait for each other to do

e.g., wait for disk interrupt to complete
e.g., wait for pipe readers to make space in pipe
e.g., wait for child to exit
e.g., wait for block to use

CS3210 - Spring 2017
20 / 41

Producer and Consumer Queue
Queue allows one process to send a nonzero pointer to another process
For only one sender and one receiver on different CPUs.
Send loops until queue is empty then puts pointer p in the queue
Recv loops until the queue is non-empty and takes the pointer out
Both modify q=>ptr, but send only writes the pointer when zero
Recv only writes when nonzero, so no lost updates

CS3210 - Spring 2017
21 / 41

Strawman solution: spin
01 struct q { void *ptr; };
02
03 void* send(struct q *q, void *p) {
04 while(q=>ptr != 0)
05 ;
06 q=>ptr = p;
07 }
08
09 void* recv(struct q *q) {
10 void *p;
11 while((p = q=>ptr) == 0)
12 ;
13 q=>ptr = 0;
14 return p;
15 }

CS3210 - Spring 2017
22 / 41

Strawman solution: spin
Q: cpu0 send(), cpu1 recv()?
Q: cpu0 send(), cpu1 send()?
Q: cpu0 recv(), cpu1 send()?
Q: cpu0 recv(), cpu1 recv()?
Q: problem?

CS3210 - Spring 2017
23 / 41

Better solution: primitives for
coordination

Sleep & wakeup (xv6)
Condition variables (e.g., pthread_cond)
Barriers (next tutorial)

CS3210 - Spring 2017
24 / 41

Sleep & wakeup
sleep(chan)

sleeps on a "channel", an address to name the condition we are
sleeping on

wakeup(chan)
wakeup wakes up all threads sleeping on chan
this may wake up more than one thread

CS3210 - Spring 2017
25 / 41

Attempt 1: sleep & wakeup
01 void* send(struct q *q, void *p) {
02 while(q=>ptr != 0)
03 ;
04 q=>ptr = p;
05 wakeup(q); /* Q? */
06 }
07
08 void* recv(struct q *q) {
09 void *p;
10 while((p = q=>ptr) == 0)
11 sleep(q); /* Q? */
12 q=>ptr = 0;
13 return p;
14 }

CS3210 - Spring 2017
26 / 41

Strawman solution: spin
Q: cpu0 send(), cpu1 recv()?
Q: cpu0 send(), cpu1 send()?
Q: cpu0 recv(), cpu1 send()?
Q: cpu0 recv(), cpu1 recv()?
Q: problem? (hint: concurrently run while in send/recv)

CS3210 - Spring 2017
27 / 41

Lost wakeup problem

CS3210 - Spring 2017
28 / 41

Attempt1: �xing the lost wakeup
problem

Q: how to atomically run the code (checking and sleeping)?

10 while((p = q=>ptr) == 0)
11 sleep(q);

CS3210 - Spring 2017
29 / 41

Attempt1: �xing the lost wakeup
problem

Let's use a spinlock

struct q {
 struct spinlock lock;
 void *ptr;
};

CS3210 - Spring 2017
30 / 41

Attempt1: �xing the lost wakeup
problem
01 void* send(struct q *q, void *p) {
02 acquire(&q=>lock);
03 while(q=>ptr != 0)
04 ;
05 q=>ptr = p;
06 wakeup(q);
07 release(&q=>lock);
08 }
09
10 void* recv(struct q *q) {
11 void *p;
12 acquire(&q=>lock);
13 while((p = q=>ptr) == 0)
14 sleep(q);
15 q=>ptr = 0;
16 release(&q=>lock);
17 return p;
18 }

CS3210 - Spring 2017
31 / 41

Problems?
Q: cpu0 send(), cpu1 recv()?
Q: cpu0 send(), cpu1 send()?
Q: cpu0 recv(), cpu1 send()?
Q: cpu0 recv(), cpu1 recv()?

CS3210 - Spring 2017
32 / 41

Attempt2: releasing the lock when
sleeping
01 void* send(struct q *q, void *p) {
02 acquire(&q=>lock);
03 while(q=>ptr != 0)
04 ;
05 q=>ptr = p;
06 wakeup(q);
07 release(&q=>lock);
08 }
09
10 void* recv(struct q *q) {
11 void *p;
12 acquire(&q=>lock);
13 while((p = q=>ptr) == 0)
14 sleep(q, &q=>lock);
15 q=>ptr = 0;
16 release(&q=>lock);
17 return p;
18 }

CS3210 - Spring 2017
33 / 41

Problems?
Q: cpu0 send(), cpu1 recv()?
Q: cpu0 send(), cpu1 send()?
Q: cpu0 recv(), cpu1 send()?
Q: cpu0 recv(), cpu1 recv()?
We need a similar treatment for send() (i.e., sleep())

CS3210 - Spring 2017
34 / 41

Code
sleep(), wakeup()
about: ptable.lock

CS3210 - Spring 2017
35 / 41

Summary: sleep takes a lock as
argument

Sleeper and wakeup acquires locks for shared data structure
sleep() holds the lock until after it has ptable.lock
Once it has ptable.lock, no wakeup can come in before it sets state to
sleeping -> no lost wakeup problem
Requires that sleep takes a lock argument!

CS3210 - Spring 2017
36 / 41

Case study: ide (blockio)
Device I/O is too slow to just spin (wait) for its competition
bread(b) -> iderw(b)

it waits (sleep) until the requests block is ready
trap() -> ideintr()

it notifies (wakeup) the waiter

CS3210 - Spring 2017
37 / 41

Example: iderw
code: iderw() (sleeper), ideintr() (wakeup)
Q: wakeup cannot get lock until sleeper is already to at sleep, why a loop
around sleep?

01 // Wait for request to finish.
02 while((b->flags & (B_VALID|B_DIRTY)) != B_VALID){
03 sleep(b, &idelock);
04 }

CS3210 - Spring 2017
38 / 41

Another example: pipe
What is the race if sleep didn't take p->lock as argument?

CS3210 - Spring 2017
39 / 41

Many primitives in literature to solve
lost-wakeup problem

Counting wakeup&sleep calls in semaphores
Pass locks as an extra argument in condition variables (as in sleep)

CS3210 - Spring 2017
40 / 41

References
Intel Manual
UW CSE 451
OSPP
MIT 6.828
Wikipedia
The Internet

CS3210 - Spring 2017
41 / 41

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://courses.cs.washington.edu/courses/cse451/15au/
http://ospp.cs.washington.edu/
https://pdos.csail.mit.edu/6.828/2014/

