
CS3210: File Systems
Tim Andersen

CS3210 - Spring 2017
1 / 35



Lecture plan:
File systems

API -> disk layout

dumpfs

Buffer cache

xv6 in action - code walk

CS3210 - Spring 2017
2 / 35



Storage trend

CS3210 - Spring 2017
3 / 35



Do SSDs solve the problem?

http://www.makeuseof.com/tag/ram-drives-faster-ssds-5-things-must-
know/

CS3210 - Spring 2017
4 / 35

http://www.makeuseof.com/tag/ram-drives-faster-ssds-5-things-must-know/


High speed storage in NVM is
approaching RAM

High performance data recorders can approach RAM speeds, e.g., 2.5
GB/sec

These solutions, however, are far more expensive than DRAM

Used in applications where reliable persistent storage is required such as
real-time sensor (radar, imagery, etc.) data recording.

None of this is useful, however, without an efficient file system.

CS3210 - Spring 2017
5 / 35



Why are �le systems useful?
Durability across restarts

Naming and organization

Sharing among programs and users

CS3210 - Spring 2017
6 / 35



Why interesting?
Crash recovery

Performance

API design for sharing

Security for sharing

Abstraction is useful: pipes, devices, /proc, /afs, etc.

so FS-oriented apps work with many kinds of objects

You will implement one for JOS!

CS3210 - Spring 2017
7 / 35



API example --
UNIX/Posix/Linux/xv6/&c:

fd = open("x/y", -);

write(fd, "abc", 3);

link("x/y", "x/z");

unlink("x/y");

Plan 9 OS (Bell labs)

Attempts to structure entire OS as a filesystem
http://plan9.bell-labs.com/plan9/

CS3210 - Spring 2017
8 / 35

http://plan9.bell-labs.com/plan9/


High-level API choices
Granularity

files, virtual disks, databases

File content

byte array, records, b-tree (or key-value stores)

Organization:

name hierarchy vs flat names (object IDs)

Synchronization

None vs locks, transaction rollbacks

CS3210 - Spring 2017
9 / 35



API implications:
File descriptor (fd) refers to something

preserved even if file name changes or deleted

File can have multiple links i.e., multiple directories

file info should be stored somewhere other than directory

Thus a file is independent of its names

it is called an "inode"
inode must keep link count (tells us when to free)
inode must have count of open fds'
inode deallocation deferred until last link, fd removed

CS3210 - Spring 2017
10 / 35



Let us talk about xv6

CS3210 - Spring 2017
11 / 35



FS software layers

CS3210 - Spring 2017
12 / 35



On-disk layout

Let's discuss each layer

CS3210 - Spring 2017
13 / 35



Hard disk

CS3210 - Spring 2017
14 / 35



Disk blocks
Most o/s use blocks of multiple sectors

e.g. 4 KB blocks = 8 sectors
to reduce book-keeping and seek overheads

xv6 uses single-sector blocks for simplicity

"meta-data"

everything on disk other than file content
super block, i-nodes, bitmap, directory content

CS3210 - Spring 2017
15 / 35



Inode
On-disk

type (free, file, directory, device)
nlink
size
addrs[12+1]

Q: Why 12+1 ?

CS3210 - Spring 2017
16 / 35



Direct and indirect blocks

CS3210 - Spring 2017
17 / 35



Direct and indirect blocks
How to find file's byte 8000?

logical block 15 = 8000 / BLOCK_SIZE
3rd entry in the indirect block

i-node structure

each i-node has an i-number
easy to turn i-number into inode
inode is 64 bytes long
byte address on disk: 2*512 + 64*inum

CS3210 - Spring 2017
18 / 35



Directory contents
Directory much like a file

but user can't directly write

Content is array of dirents

Dirent:

inum
14-byte file name
dirent is free if inum is zero

CS3210 - Spring 2017
19 / 35



Inode operations
kernel keeps inode in-memory until reference != 0

ialloc() - allocate inode

ilock() - and iunlock sync access to inode

iget() - returns the inode struct and inc ref count

iput() - dec the ref count and frees is ref = 0

iupdate() - copy modified inode to the disk

CS3210 - Spring 2017
20 / 35



Inode xv6 usage
ip = iget(dev, inum)
ilock(ip)
... examine and modify ip−>xxx ...
iunlock(ip)
iput(ip)
~~~~

CS3210 - Spring 2017
21 / 35



Concurrent calls to ialloc?
Will they get the same inode?

note bread / write / brelse in ialloc
bread locks the block, perhaps waiting, and reads from disk
brelse unlocks the block

Why do we use iget even after finding an inode?

Let's see the iget method

Q: Why iget does not hold ilock?

CS3210 - Spring 2017
22 / 35



Free block bitmap

xv6 maintain free bitmap on disk – one bit per block (sb->bmapstart)
0 means block is free, 1 means block in use

Checking if a block is free if you know block number
buf[blockNum/8] & (0x1 << (blockNum % 8))

CS3210 - Spring 2017
23 / 35



Block allocation sequence
balloc() - allocates new disk block
readsb() - into to sb struct in memory
Iterate over the bitmap blocks for free block
If block found, update corresponding bit
bfree() - clear the relevant bit

CS3210 - Spring 2017
24 / 35



Bu�er cache layer
A double-linked list of buf structures
Holding cached copies of disk block contents
Two jobs:

synchronize access to disk blocks
one block on disk – one block in memory
one kernel thread at the time use same block

Cache popular blocks in fixed buffers

CS3210 - Spring 2017
25 / 35



Bu�er cache layer
Flags:

B_BUSY – buffer locked
B_VALID – buffer has been read from disk
B_DIRTY – buffer was modified and should be written to disk

Interface:
binit() - called by main
bread() - to read buffer from block on disk
bwrite()- to write buf to disk
brelse()- to release buf when done and move it to the head

CS3210 - Spring 2017
26 / 35



Bu�er cache layer
Let's look at the block cache in bio.c

block cache holds just a few recently-used blocks
FS calls bread, which calls bget

bget looks to see if block already cached
if present and not B_BUSY, return the block
if present and B_BUSY, wait
if not present, re-use an existing buffer

Q: why goto loop after sleep()?

CS3210 - Spring 2017
27 / 35



Replacement policy
xv6 implements LRU for buffer cache replacement.
Maintain the buffers in a doubly-linked list.
When done accessing a buffer (at the time of clearing the busy bit),

move the buffer to the front of the buffer cache list
start replacement at the last entry of the list.

Let's discuss buffer cache and disk driver interaction

CS3210 - Spring 2017
28 / 35



Disk driver
Let's look into ide.c
ideinit() initializes the IDE

Q. What does this line mean ioapicenable(IRQ_IDE, ncpu - 1)?
Q. Why do we check if disk 1 is present?

CS3210 - Spring 2017
29 / 35



Disk driver
ide_rw() - read or write a block from/to the disk

Q: How to handle multiple ide_rw() calss?
Notice just one lock (ide_lock) for enforcing multiple invariants
iderw and ideintr share the request queue using idelock
Q: What if we enable interrupts with single processor?

CS3210 - Spring 2017
30 / 35



Now, let's look at xv6 in action
Focus on disk writes
Illustrate on-disk data structures via how updated

CS3210 - Spring 2017
31 / 35



Q: How does xv6 create a �le?
$ echo > a
write 34 ialloc (from create sysfile.c; mark it non-free)
write 34 iupdate (from create; initialize nlink &c)
write 59 writei (from dirlink fs.c, from create)

xv6 supports logging which we will discuss next class
log_write replaces bwrite()

Q: what's in block 34?
look at create() in sysfile.c

Q: why two writes to block 34?
Q: what is in block 59?

CS3210 - Spring 2017
32 / 35



xv6 Write data to a �le
$ echo x > a
write 58 balloc- (from bmap, from writei)
write 613 bzero
write 613 writei (from filewrite file.c)
write 34 iupdate- (from writei)
write 613 writei
write 34 iupdate

Q: what's in block 58, block 613?
look at writei call to bmap
look at bmap call to balloc

CS3210 - Spring 2017
33 / 35



Delete a �le
$ rm a
write 59 writei (from sys_unlink; directory content)
write 34 iupdate (from sys_unlink; link count of file)
write 58 bfree- (from itrunc, from iput)
write 34 iupdate (from itrunc)
write 34 iupdate (from iput)

CS3210 - Spring 2017
34 / 35



Q: How fast xv6 apps. can read big �les?
First reads data from disk to buffer cache
Then, from buffer cache to user space
What happens if we pass user buffer to the disk device driver?
Q: How much RAM should we dedicate to disk buffers?

CS3210 - Spring 2017
35 / 35




