
CS3210: Scaling Operating Systems: A
Case Study

Tim Andersen

CS3210 - Spring 2017
1 / 11

Lecture plan
Ticket Locks

Performance collapse from non-scalable locks

Reasons for collapse

MCS Locks

CS3210 - Spring 2017
2 / 11

CS3210 - Spring 2017

CS3210 - Spring 2017

Lock Contention Performance
Non-scalable locks like spin locks have poor performance when highly
contended

Many systems, nevertheless, use them, including the Linux kernel

Performance degradation is not a gradual leveling off (diminishing
returns) but a sudden collapse

A system with 10 cores can performance considerably better than one
with 15 or 40

CS3210 - Spring 2017
3 / 11

CS3210 - Spring 2017

Why it's important
Non-scalable locks severely degrade performance in common scenarios
like file system access, network services, and memory mapping.

As systems gain more and more cores, contention becomes more common

Onset of performance collapse can be sudden as cores are added,
meaning hardware upgrades without corresponding software upgrades
can be catastrophic for system performance

Critical sections can be very short and still collapse performance

CS3210 - Spring 2017
4 / 11

CS3210 - Spring 2017

Non-scalable ticket lock default in Linux
kernel
struct spinlock_t {
 int current_ticket;
 int next_ticket;
}

void spin_lock(spinlock_t *lock)
{
 int t = atomic_fetch_and_inc(&lock->next_ticket);
 while (t != lock->current_ticket)
 ; /* spin */
}

void spin_unlock(spinlock_t *lock)
{
 lock->current_ticket++;
}

Q: Why use spinlocks instead of sleep/wakeup?

CS3210 - Spring 2017
5 / 11

CS3210 - Spring 2017

Why lock contention is slow
If many cores are waiting, lock variables will be cached

Unlock will invalidate all cached entries

All cores will read the cache line

Cache reads are serialized in most architectures

Next in line core will receive updated cache line on average half-way
through complete update

Lock handoff increases in proportion to number of waiting cores

Inter-core operations take 100s of cycles, meaning 1000s of cycles are used
if dozens of cores are waiting

CS3210 - Spring 2017
6 / 11

CS3210 - Spring 2017

Benchmarks of Linux kernel locking
FOPS: creates a file and starts one process on each core, repeatedly opens
and closes

MEMPOP: creates a process on each core, repeatedly maps 64 KB of
memory with MAP_POPULATE flag, then munmaps

PFIND: searches for a file by executing GNU find utility

EXIM: mail server listens for connections and forks for each new
connection.

CS3210 - Spring 2017
7 / 11

CS3210 - Spring 2017

Results of benchmarks

CS3210 - Spring 2017
8 / 11

CS3210 - Spring 2017

Causes

CS3210 - Spring 2017
9 / 11

CS3210 - Spring 2017

Solution: Scable Locks (MCS)
Spins on local rather than global variable

Each core is a node in a queue

If lock is held, core registers itself by adding node to the queue

Busy wait on own is_locked field

When unlocking, set next in line is_locked field to false.

Lock acquisition is now O(1) in number of cores instead of O(N)

CS3210 - Spring 2017
10 / 11

CS3210 - Spring 2017

Results comparison

CS3210 - Spring 2017
11 / 11

CS3210 - Spring 2017

