LecO4: Writing Exploits

Taesoo Kim



Scoreboard

1,000
750

500

250

0
Aug 22, 2016 Aug 29, 2016 Sep 5, 2016 Sep 12, 2016



Administrivia

Join R
An optional recitation on every Wed
5:00-6:00pm (in Klaus 1447)
6:00-6:30pm ( in Klaus 3126 )
Due: Lab03 (stack overflow) on Sept 22 at midnight

NSA Codebreaker Challenge — New due: Oct 13


https://tc.gtisc.gatech.edu/cs6265/2016/piazza.com/gatech/fall2016/cs6265/home
https://codebreaker.ltsnet.net/

Course Grading (Expectation for A/B)

Game:
40% — A
30-40% — B
Self competition as well:
8 on average — A
6 on average — B
Currently, ~10 (Lab1),~9.5 (Lab2),so all A!

Please don't give up! Here we are to help you succeed!



Survival Guide for CS6260

Work as a group/team (find the best one around you!)
NOT each member tackles different problems
All members tackle the same problem (and discuss)
Ask questions wisely
Explain your assumption first
Explain your problem second
Take advantage of four TAs standing next you to help!
World-class (literally) hackers give a private tutoring for you!

But, remember! only when you ask ..



NSA Codebreaker Challenges

University Task i Task ) Task . Task i Task i Task
1 2 3 4 5 6
Carnegie Mellon University 18 15 7 4 4 2
Georgia Institute of Technology 41 31 29 20 3 1
Naval Postgraduate School 4 4 4 4 3 0
Dakota State University 48 34 19 15 1 0
University of Maryland, Baltimore County 23 17 8 7 1 0
Purdue University 7 6 5 4 1 0
University of Tulsa 5 5 3 2 1 0
University of Maryland, College Park 4 4 3 2 1 0
University of Maryland - University College 3 2 2 1 1 0
Palm Beach State College 1 1 1 1 1 0
Showing 1to 10 of 215 entries Previous ‘T‘ 2 3 4 5 22 Next



NSA Codebreaker Challenges Tasks

Task 1. Compute a hash and identify IED network ports
Task 2: Refine IED network traffic signature

Task 3: Decrypt |IED key file

Task 4: Disarm an |IED with the key

Task 5: Disarm any |[ED without a key

Task 6: Permanently disable any IED



Lab04: Stack overflow!

.00 Phrack 49 Oo.
Volume Seven, Issue Forty-Nine
File 14 of 16

BugTraq, ro0t, and Underground.Org
bring you

XK X
Smashing The Stack For Fun And Profit
XHOOOOOOOOOOOOOOOOXHXNX

by Aleph One
alephl@underground.org

“smash the stack™ [C programming] n. On many C implementations
it is possible to corrupt the execution stack by writing past
the end of an array declared auto in a routine. Code that does
this is said to smash the stack, and can cause return from the
routine to jump to a random address. This can produce some of
the most insidious data-dependent bugs known to mankind.

Variants include trash the stack, scribble the stack, mangle

the stack; the term mung the stack is not used, as this is

never done intentionally. See spam; see also alias bug,

fandango on core, memory leak, precedence lossage, overrun screw.



Lab04: Stack overflow!

It's time to write real exploits (i.e., control hijacking)
TONS of interesting challenges!

e.g., lack-of-four, frobnicated, upside-down ..



Today's Tutorial

Example: exploit crackmeOx00 to get a flag!
Explore a template exploit code
In-class tutorial

IDA (how many people are using?)

Extending the exploit template

10



Reminder: crackmeOx00

$ objdump -d crackmedx00

8048414 : 55

8048415 89 e5
8048417 : 83 ec 28
+--- ebp
top \%
L 1[fp][ra]

push
mov
sub

%ebp
%esp, %kebp
$0x28,%esp

11



Reminder: crackmeOx00

$ objdump -d crackmedx00

8048448 :
804844b:
804844f:
8048456:

top
[

| <----

|<-- Ox18-->|+--- ebp

8d 45 e8
89 44 24 04

c/ 04 24 8c 85 04 08

e8 d5 f

[-~=~> ]

Ox28

e ff ff

\%

Jltp]lra]

lea
mov
movl
call

-0x18(%ebp), %eax
%eax,0x4(%esp)
$0x804858c, (%esp)
8048330 <scanf@plt>

12



Reminder: crackmeOx00

|<-- @x18-->|+--- ebp
top \%
[ [~~~~> 1 1[fp][ra]
| <---- Ox28 ------- > |
AAAABBBB. . ... GGGGHHHH

13



14

Example: Injecting Shellcode

|<-- @x18-->|+--- ebp

top \%
[ [~~~~> ] T(fp][ra] .... [SHELLCODE=...]
| <---- Ox28 ------- > | A
AAAABBBB. . ... GGGG[ ] |
+ |
e - - +

1) How to decide the address of an environment variable? (changing!)
2) How to inject (or manipulate) environment variables?



DEMO: Exploiting crackme0x00!

core dump
ulimit -c unlimited
gdb -c core

shell commands/tools
env
export
hexedit

dmesg



In-class Tutorial

Step 1: Bruteforcing

Step 2: Play with your first exploit!

$ git git@clone tc.gtisc.gatech.edu:seclab-pub cs6265
or

$ git pull

$ cd cs6265/1Labo4

$ ./init.sh

$ cd tut
$ cat README

16



References


https://www.hex-rays.com/products/ida/support/download_demo.shtml
http://phrack.org/issues/49/14.html

