
Lec06: DEP and ASLR

Taesoo Kim

1

Scoreboard
2

NSA Codebreaker Challenges
3

Administrivia
• Congrats!! We've completed the half of labs!

• Due: Lab06 is out and its due on Oct 5 at midnight

• NSA Codebreaker Challenge → Due: Nov 30

• We'll release new lab every Thursday at 8pm

• If you are working on Thursday, please connect to "-p 2024"

• If you haven't read yet, please check some time saving tips on Piazza.

4

https://codebreaker.ltsnet.net/

Lab05: Stack Protection
5

Best Write-ups for Lab05
• xor: shudak3, carterchen
• stackshield: spark720, shudak3
• weak-random: markwis, spark720
• gs-random: carterchen, shudak3
• terminator: spark720, brian_edmonds
• assassination: carterchen, dhaval
• mini-heartbleed: rpgiri, brian_edmonds
• pltgot: carterchen, N/A
• ssp: shudak3, carterchen
• fd: luoyinfeng, spark720

6

Discussion: Lab05
• What's the most "annoying" bug or challenge?

• What's the most "interesting" bug or challenge?

• So, should we use canary or not?

• So, which one would you like to use?

7

Take-outs from Stack Canary?
• Stack Canary indirectly protects the "integrity" of RA, funcptr, etc

• (e.g., exploitation mitigation → NX, canary)

• We better prevent buffer overflows at the first place

• (e.g., code analysis, better APIs)

8

Subtle Design Choices for the Stack Canary
• Where to put? (e.g., right above ra? fp? local vars?)

• Which value should I use? (e.g., secrete? random? per exec? per func?)

• How to check its integrity? (e.g., xor? cmp?)

• What to do after you find corrupted? (e.g., crash? report?)

9

Discussion: xor
• How xor canary works?

• What happens if RA is overwritten (or leaked)?

10

Discussion: xor
11

Discussion: stackshield
• How stackshield works? (can you overwrite ra/fp?)

• Compared to xor, what's better?

• Then, could you control its control flow?

12

Discussion: weak-random
• How weak-random is implemented?

• How did you exploit?

• What if we use a perfect random value (e.g., /dev/random)?

13

Discussion: gs-random
• Near perfect (Microsoft CL):

• strong randomness: /dev/random

• protect fp/ra

14

Discussion: gs-random
 void echo(char *msg) {
 char buf[80];

 strcpy(buf, msg);
 capitalize(buf);
 strcpy(msg, buf);
 ...
 }

15

Discussion: gs-random (arbitrary overwrite)
 void echo(char *msg) {
 char buf[80];

 /* buf = [val] ... [addr] */
 /* *addr = val */

 strcpy(buf, msg); /* overwrite msg (addr) */
 capitalize(buf);
 strcpy(msg, buf); /* overwrite addr with buf */
 ...
 }

16

Discussion: gs-random
17

Discussion: terminator
• How is the terminator canary implemented?

18

Discussion: terminator
• What's the vulnerability?

19

Discussion: terminator (off-by-one)
20

Discussion: terminator
• How to prevent this vulnerability?

21

Discussion: assassination
• Near perfect (GCC)

• random canary

• protect fp, ra

• What's the bug?

• How to prevent?

22

Discussion: mini-heartbleed
23

Discussion: ssp
• What happens if you cause a crash?

24

Discussion: ssp
25

Discussion: ssp
26

Discussion: pltgot
• What was the vulnerability?

• Where to overwrite?

• How to prevent?

27

Discussion: fd
28

Discussion: fd
• Why need vtable?

29

Discussion: fd
30

Discussion: fd
• How to prevent this vulnerability?

31

Discussion: How to make exploitation
difficult?

32

Discussion: How to make exploitation
difficult?

• What if the stack address (or code/heap) is random?

• How could you exploit any challenge in the last week?

• What if the stack/heap memory is not executable?

• Then, where to put your shellcode?

33

Today's Tutorial
• In-class tutorial:

• About: format string vulnerability

• Format string to arbitrary read

• Format string to arbitrary write

• (optional) Format string to arbitrary execution

34

Format string: *printf
 1) printf("hello: %d", 10);
 2) printf("hello: %d/%d", 10, 20);
 3) printf("hello: %d/%d/%d", 10, 20);

35

Format string: *printf
 printf("%d/%d/%d", a1, a2 ...)

 +----(n)----+
 | v
 [ra][fmt][a1][a2][a3][..]
 (1) (2) (3)

36

Format string specifiers
 printf(fmt);

 %p: pointer
 %s: string
 %d: int
 %x: hex

 %[nth]$p
 (e.g., %1$p = first argument)

37

Arbitrary Read
 printf("\xaa\xbb\xcc\xdd%3$s")

 +---(3rd)---+
 | v
 [ra][fmt][a1][a2][\xaa\xbb\xcc\xdd%3$s]
 (1) (2) (3)

 -> "\xaa\xbb\xcc\xdd[value]"

38

More Format Specifiers
 printf("1234%n", &len) -> len=4

 %n: write #bytes
 %hn (short), %hhn (byte)

 NOTE. %10d: print an int on 10-space word (e.g., " 10")

39

Write (sth) to an Arbitrary Location
 printf("\xaa\xbb\xcc\xdd%3$n")

 +---(3rd)---+
 | v
 [ra][fmt][a1][a2][\xaa\xbb\xcc\xdd%3$n]
 (1) (2) (3)

 -> "\xaa\xbb\xcc\xdd" = 4

40

Arbitrary Write
 printf("\xaa\xbb\xcc\xdd%6c%3$n")

 +---(3rd)---+
 | v
 [ra][fmt][a1][a2][\xaa\xbb\xcc\xdd%6c%3$n]
 (1) (2) (3)

 -> *(int *)(0xddccbbaa) = strlen("\xaa\xbb\xcc\xdd......") = 10

41

In-class Tutorial
• Step1: Format string to arbitrary read

• Step2: Format string to arbitrary write

• Step3: (optional) Format string to arbitrary execution

 $ ssh YOURID@cyclonus.gtisc.gatech.edu -p 2023
 $ ssh YOURID@cyclonus.gtisc.gatech.edu -p 2022
 $ ssh YOURID@computron.gtisc.gatech.edu -p 2023
 $ ssh YOURID@computron.gtisc.gatech.edu -p 2022

 $ cd tut/lab06
 $ cat README

42

References
• Bypassing ASLR

• Advanced return-into-lib(c) exploits

• Format string vulnerability

43

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-slides.pdf
http://phrack.org/issues/58/4.html
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

