Lecll: Miscellaneous Topics

Taesoo Kim

Two More Labs to Go!

Oct 28 Oct 29 Oct 30

Oct 31
DUE: Lab 07

Nov 01

LEC: Integer Overflows, Race Conditions
[slides]

TUT: Tut08: Logic Errors [video]
Assigned: Lab08: Miscellaneous Topics

Nov 04 Nov 05 Nov 06

Nov 07
DUE: Lab 08

Nov 08

LEC: Designing Heap Allocator [slides] [note]
[whiteboard]

TUT: Tut09: Understanding Heap Bugs [video1],
[videoZ2]

Assigned: Lab09: Exploiting Heap Bugs

Nov 11 Nov 12 Nov 13

Nov 14

Nov 15
LEC: Exploiting Heap Allocator [slides]
TUT: Tut09: Exploiting Heap Allocators [video]

Administrivia

In-class CTF: https://ctf.gts5.org/ (Open to public! Nov 22)
Registration: http://bit.ly/tkctf register (#2-4 persons per team)
Rules: https://tc.gts3.org/cs6265/2024-fall/ctf.html
Submit your team’s challenge by Nov 16

NSA Codebreaker Challenge — Due: Dec 12

https://ctf.gts3.org/
http://bit.ly/tkctf_register
https://tc.gts3.org/cs6265/2024-fall/ctf.html
https://nsa-codebreaker.org/challenge

About CTF challenge

Fork https://github.com/sslab-gatech/ctf-template and add our github IDs
Remote challenge
exploit.py and test.py
patch.diff for defense points

DEMO

https://github.com/sslab-gatech/ctf-template

Summary of Lab07/

Remote environments impose unique challenges:
Side-channels: passwd (timing channel)
Command injection: mini-shellshock (via cgi params)
Weak defense: diehard (stack canary)
Insufficient info: 2048 _game (quessable)
Time-of-check-time-of-use: memo (file size/read)

Common attack vectors: obscure (on ARM), array, fmtstr-heap2, 2kills, return-to-dl

Discussion: passwd

1 for (; cur < end; cur ++) {
2 int ¢ = fgetc(stdin);

3 if (c == '\n')

4 break;

5 /* short circuit */

6 if (*cur !'= c) {

Vs break;

8 3

9 /* NOTE. make it easlier */
10 usleep(10000);

11 3

[) [J
°
Discussion: passwd
120 ; , : .
data ja =———
data b -------
data jo --------
data jd e
; data je
100 1 data jf]
;, data jg - - -~
i data jh =~
2 data ji
A data Jj
80 I data jk ------- .
$ | data j| --------
d i data jm s
¥ A | data jn
- A\ gatajo
n R ata | -
%0 S g da’[ajg ---------
. data jr
e 4 data |s
l B ddata Jtosme-
i g ata ju =-=---e-
40 i ir" data jy -
i H data jw
i ga’[a jx
- L atajy - - -
£ \'” data jz ===
20 | : TR total j
H \\\ :: T
3’ Nk
i A
!
[I I oy o]

Discussion; diehard

What was the problem?

Discussion; diehard

Problem: fork() does not change canary

Exploit: change the last byte of canary one at a time
if correct, executed normally
if wrong, terminated

2764 — 278 x 8 (now, tractable!)

e.g.,Apache stack overflow

Lab(08: Miscellaneous

Integer overflow
Web
Race condition

Interesting exploit techniques, so miscellaneous

10

CS101: Integer Representation

https://en.wikipedia.org/wiki/Integer_overflow

C5101: Two's Complement Representation

The value w of an N-bit integeray_1any_2...ag

N—2
w=—ay_12V"1 + E a;2".
i=0

e.g., in x86 (32-bit, 4-byte):
0x0000VLLY -> 0

Oxffffffff -> -1

Ox7fffffff -> 2147483647 (INT_MAX)
Ox80000000 -> -2147483648 (INT_MIN)

Ref. https://en.wikipedia.org/wiki/Two’s_complement

12

https://en.wikipedia.org/wiki/Two's_complement

Arithmetic with Two's Complements

One instruction works for both sign/unsigned integers (i.e.,add, sub, mul)
e.g.,add regl, reg2 (not distinguishing signedness of regl/2)
Properties:
Non-symmetric representation of range, so single 0

MSB represents signedness: 1 means negative, 0 means non-negative

13

14

Arithmetic with Two's Complements

One instruction works for both sign/unsigned integers (i.e.,add, sub, mul)
e.g.,add regl, reg2 (not distinguishing signedness of regl/2)
Properties:
Non-symmetric representation of range, so single 0

MSB represents signedness: 1 means negative, 0 means non-negative

0x00000001 + Ox0V0LVLD2
Oxffffffff + Ox00000002
Oxffffffff + oxfffffffe

Ox00000003 (1 + 2 = 3)
Ox00000001 (-1 + 2 = 1)
OXEEEFFffd (-1 +-2 =-3)

range(signed integer) = [-2731, 2731-1] = [-2147483648, 2147483647]
range(unsigned integer) [0, 2732-17] = [0, 4294967295]

Question!

Then, how to interpret the arithmetic result?

, OXTIffffff + Oxfffffffe = Oxfffffffd (-1 +-2 =-3)

mov eax, Oxffffffff , eax = OxXLIfrfrfrr
mov ebx, Oxfffffffd , ebx = Oxftrfffrrfe

add eax, ebx Oxfrfrfrfrrfrd
, eax = Oxfrrrrrfd

;, 1) is it -37

;, 2) 1s it 4294967293 (== Oxffffffrfd)?

, €ax

15

ldea: Using Status Flags (E/RFLAGS)

CF: overflow of unsigned arithmetic operations

OF: overflow of signed arithmetic operations

0x000000A1 + 0Ox0VYLLVO2 = Ox0PPYLR3 (1 + 2 = 3)
-> CF: ?2 OF: ? SF: ?

ldea: Using Status Flags (E/RFLAGS)

CF: overflow of unsigned arithmetic operations

OF: overflow of signed arithmetic operations

0x000000A1 + 0Ox0VYLLVO2 = Ox0PPYLR3 (1 + 2 = 3)
-> CF: © OF: © SF: @
OxfEffffff + Ox00000002 = Ox00VOVLY1 (-1 + 2 = 1)

-> CF: 2 OF: ? SF: ?

17

ldea: Using Status Flags (E/RFLAGS)

CF: overflow of unsigned arithmetic operations

OF: overflow of signed arithmetic operations

0x000000A1 + 0Ox0VYLLVO2 = Ox0PPYLR3 (1 + 2 = 3)
-> CF: @ OF: © SF: ©
OxfEffffff + Ox00000002 = Ox00VOVLY1 (-1 + 2 = 1)

-> CF: 1 OF: © SF: @
Ox80000000 + OxEffffffff = Ox7fffffff (-2147483648 + -1
-> CF: ? OF: ? SF: ?

2147483647)

18

ldea: Using Status Flags (E/RFLAGS)

CF: overflow of unsigned arithmetic operations

OF: overflow of signed arithmetic operations

0x000000A1 + 0Ox0VYLLVO2 = Ox0PPYLR3 (1 + 2 = 3)
-> CF: © OF: © SF: @
OxfEffffff + Ox00000002 = Ox00VOVLY1 (-1 + 2 = 1)

-> CF: 1 OF: © SF: @

Ox80000000 + OxEffffffff = Ox7fffffff (-2147483648 + -1

-> CF: 1 OF: 1 SF: ©
Ox7fffffff + Ox00000001 = Ox80000VVO (2147483647 +
-> CF: ? OF: ? SF: ?

1

2147483647)

-2147483648)

19

ldea: Using Status Flags (E/RFLAGS)

CF: overflow of unsigned arithmetic operations

OF: overflow of signed arithmetic operations

0x000000A1 + 0Ox0VYLLVO2 = Ox0PPYLR3 (1 + 2 = 3)
-> CF: © OF: © SF: @
OxfEffffff + Ox00000002 = Ox00VOVLY1 (-1 + 2 = 1)

-> CF: 1 OF: © SF: @

Ox80000000 + OxEffffffff = Ox7fffffff (-2147483648 + -1

-> CF: 1 OF: 1 SF: ©
Ox7fffffff + Ox00000001 = Ox80000VVO (2147483647 +
-> CF: © OF: 1 SF: 1

1

2147483647)

-2147483648)

20

C’s Integer Representation

N M

N N M

k* k

E S

| N

—

char

unsigned char
short

unsigned short
int

unsigned int
Long

unsigned long
Llong long
unsigned long long
size t

ssize t

void*

x86

ARNADNOWORNDNDNIDMNNNERLPR

(32b)
byte

byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

x86_64 (64b)

1

0 00O 00O 00O 00O 00O 0O A~ A NN P

byte

byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

21

Thinking of C’s Type/Precision Conversion

Lower — higher precision

char -> int
[-128, 1277 -> [-128, 127]

Thinking of C’s Type/Precision Conversion

Lower — higher precision

char ->
[-128, 127] ->
[0x80, Ox7f] ->

unsigned char ->
[0, 255] ->

int
[-128, 127]
[OxEf££££f80, Ox0000007f]
—————— > sign extended (e.g., movsx)

unsigned int
[0, 255]

Thinking of C’s Type/Precision Conversion

Lower — higher precision

char
[-128, 127]
[Ox80, Ox7f]

unsigned char
[0, 255]
[0, Oxff]

->

->
->
->

int

[-128, 127]

[Oxff££££80,
—————— >'s

unsigned int
[0, 255]

0x0000VA7 L]
ign extended (e.g., movsx)

[0, Ox00000OLf]

> zero extended (e.g., movzx)

Thinking of C’s Type/Precision Conversion

Higher — lower precision (what’s correct mappings?)
Mathematically complex, but architecturally simple (truncation!)
int -> char

[-2147483649, 21474836471 -> [-128, 127]
[0x80000000, Ox7fffffff] -> [0x80, OX7f]

unsigned int -> unsigned char
[0, 42949672957 -> [0, 255]
[0, Oxffffffff] -> [0, Oxff]

both simply, eax -> al (by processor)

25

C5101: Question?

char cl = 100;
char c2 = 3;
char c3 = 4;

cl = cl * c2 / c3;

C5101: Question?

char
char
char

cl

D
2)

cl = 100;

c2 = 3;

c3 = 4;

cl * c2 / c3;

300 / 4 =75
500 (Ux12c, which is > 1 byte) -> Ox2c / 4 = 11

27

Basic Concept: Integer Promotion

Before any arithmetic operations,
All integer types whose size is smaller than sizeof(int):
Promote to int (if int can represent the whole range)

Promote to unsigned int (if not)

28

Basic Concept: Integer Promotion

Before any arithmetic operations,
All integer types whose size is smaller than sizeof(int):
Promote to int (if int can represent the whole range)

Promote to unsigned int (if not)

e.g.,
cl = (int)cl * (int)c2 / (int)c3;
= 100 * 3 / 4
= 300 / 4

75

29

C5101: Comparing un/signed ints

int si = -1;
unsigned int ui = 1;

if (si < ui) {

return true; // 017
+ else {

return false; // 027

by

Example: char/unsigned char Addition

Promote to int (if int can represent the whole range)

// by rule 1. -> (1)
char sc = SCHAR_MAX;
unsigned char uc = UCHAR_MAX;

Llong long sll = sc + uc;

1) (long long)((int)sc + (int)uc)?
2) (long long)sc + (long long)uc?

Example: int/unsigned int Comparison

Promote to unsigned int (if not)

// by rule 2. -> (2)

int si = -1;

unsigned int uil

printf("%d\n",
D

2)

=1;

(int)(si < ui));

ui promotes to int

= -1<1

=1

si promotes to unsigned int
= Oxffffffff < 1

= 0

Remark: Undefined Behaviors

Overflow of unsigned integers are well-defined (i.e., wrapping)
Overflow of signed integers are undefined
But well-defined to the processor (i.e., just wrapping in x86)

Optimization takes advantages of this, making it hard to understand

33

(S101: Int. Ovfl. and Undefined Behavior

1. (in x86_64) what does the expression 1 > 0 evaluate to?
(a) © (b) 1 (c) NaN (d) -1 (e) undefined

(S101: Int. Ovfl. and Undefined Behavior

1. (in x86_64) what does the expression 1 > 0 evaluate to?
(a) © (b) 1 (c) NaN (d) -1 (e) undefined

>> (b)

(int) 1 > (int) ©

(S101: Int. Ovfl. and Undefined Behavior

2. (unsigned short)l > -17
(a) 1 (b) © (c) -1 (d) undefined

(S101: Int. Ovfl. and Undefined Behavior

2. (unsigned short)l > -17
(a) 1 (b) © (c) -1 (d) undefined

>> (a)

unsigned short can be represented by int
(int)(unsigned short)l > (int)-1

(S101: Int. Ovfl. and Undefined Behavior

3. -1U > 0?
(a) 1 (b) @ (c) -1 (d) undefined

(S101: Int. Ovfl. and Undefined Behavior

3. -1U > 0?
(a) 1 (b) @ (c) -1 (d) undefined

>> (a)
unsigned int can't be represented by int,

so promote to unsigned int
(unsigned int)(-1U) = Oxffffffff > 0

(S101: Int. Ovfl. and Undefined Behavior

5. abs(-2147483%648), abs(INT_MIN) in x86_327?
(a) @ (b) <0 (c) >0 (d) NaN

(S101: Int. Ovfl. and Undefined Behavior

5. abs(-2147483%648), abs(INT_MIN) in x86_ 327
(a) @ (b) <0 (c) >0 (d) NaN

>> (b)
Undefined, but the way the processor works:

int abs (int 1) {
return i < 0 ? -1 : 1i;

3

Q. What about in x86 (64-bit)?

41

(S101: Int. Ovfl. and Undefined Behavior

6. 1U << 07
(a) 1 (b) 4 (c) UINT MAX (d) @ (e) undefined

(S101: Int. Ovfl. and Undefined Behavior

6. 1U << 07
(a) 1 (b) 4 (c) UINT MAX (d) @ (e) undefined

>> (a)

(S101: Int. Ovfl. and Undefined Behavior

7. 1U << 327
(a) 1 (b) 4 (c) UINT_MAX (d) INT_MIN (e) © (f) undefined

(S101: Int. Ovfl. and Undefined Behavior

7. 1U << 327
(a) 1 (b) 4 (c) UINT_MAX (d) INT_MIN (e) © (f) undefined

>> (f) in C

x86 (32-bit), 1U << 32 == 11|
shl edx,cl

Q. 1U << -17

(S101: Int. Ovfl. and Undefined Behavior

8. -1L << 27
(a) © (b) 4 (c) INT_MAX (d) INT_MIN (e) undefined

(S101: Int. Ovfl. and Undefined Behavior

8. -1L << 27
(a) © (b) 4 (c) INT_MAX (d) INT_MIN (e) undefined

>> (e) in C

shift operations on sign integers are undefined

x86 (32-bit), -1L << 2 == -4
edx = Oxffffffff

cl = 2

shl edx,cl

VS.

sal (signed shift, arithmatic shift)

47

(S101: Int. Ovfl. and Undefined Behavior

9. INT_MAX + 17
(a) © (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

(S101: Int. Ovfl. and Undefined Behavior

9. INT_MAX + 17
(a) © (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

>> (e)

in C

overflow in sign integers are undefined!

x86
eax

ecx
add

(32-bit), Ox7fffffff + 1 = Ox80000000
Ox7fffffff

=1

eax, ecx

49

(S101: Int. Ovfl. and Undefined Behavior

Q. How does the compiler take advantage of undefined behaviors?

int a = atoi(argv[1l]);
if (a > 0) {
if (a+1>0) ¢
printf("a+l > 0\n");
} else {
printf("?!1\n");
by
b

(S101: Int. Ovfl. and Undefined Behavior

10. UINT_MAX + 17
(a) © (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

(S101: Int. Ovfl. and Undefined Behavior

10. UINT_MAX + 17
(a) © (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

>> (a)

(S101: Int. Ovfl. and Undefined Behavior

11. -INT _MIN?
(a) © (b) 1 (c) INT MAX (d) UINT _MAX (e) INT MIN
(f) undefined

(S101: Int. Ovfl. and Undefined Behavior

11. -INT _MIN?
(a) © (b) 1 (c) INT MAX (d) UINT _MAX (e) INT MIN
(f) undefined

>> (f) in C but reuslts in (e)

(S101: Int. Ovfl. and Undefined Behavior

12. -1L > 1U? on x86_64 and x86
(a) (0, @) (b) (1, 1) (c) (0, 1) (d) (1, @)

(e) undefined

(S101: Int. Ovfl. and Undefined Behavior

12. -1L > 1U? on x86_64 and x86
(a) (0, @) (b) (1, 1) (c) (0, 1) (d) (1, @)

(e) undefined
>> (c)

x86 64: sizeof(long) > sizeof(unsigned int)
-> (long)-1L > (long)1lU

x86: sizeof(long) == sizeof(unsigned int)
-> (unsigned int)-1L > (unsigned int) 1U

56

Today’s Tutorial

In-class tutorial:
Logical vulnerability

Race condition and commnadline injection

$ ssh 1ab08@3.95.14.86
Password: <password>

$ cd tut@8-logic-bugs

57

