
Lec11: Miscellaneous Topics

Taesoo Kim

1

Two More Labs to Go!
2

Administrivia
• In-class CTF: https://ctf.gts3.org/ (Open to public! Nov 22)

• Registration: http://bit.ly/tkctf_register (#2-4 persons per team)

• Rules: https://tc.gts3.org/cs6265/2024-fall/ctf.html

• Submit your team’s challenge by Nov 16

• NSA Codebreaker Challenge → Due: Dec 12

3

https://ctf.gts3.org/
http://bit.ly/tkctf_register
https://tc.gts3.org/cs6265/2024-fall/ctf.html
https://nsa-codebreaker.org/challenge

About CTF challenge
• Fork https://github.com/sslab-gatech/ctf-template and add our github IDs

• Remote challenge

• exploit.py and test.py

• patch.diff for defense points

• DEMO

4

https://github.com/sslab-gatech/ctf-template

Summary of Lab07
• Remote environments impose unique challenges:

• Side-channels: passwd (timing channel)

• Command injection: mini-shellshock (via cgi params)

• Weak defense: diehard (stack canary)

• Insufficient info: 2048_game (guessable)

• Time-of-check-time-of-use: memo (file size/read)

• Common attack vectors: obscure (on ARM), array, fmtstr-heap2, 2kills, return-to-dl

5

Discussion: passwd
 for (; cur < end; cur ++) {1
 int c = fgetc(stdin);2
 if (c == '\n')3
 break;4
 /* short circuit */5
 if (*cur != c) {6
 break;7
 }8
 /* NOTE. make it easlier */9
 usleep(10000);10
 }11

6

Discussion: passwd
7

Discussion: diehard
• What was the problem?

8

Discussion: diehard
• Problem: fork() does not change canary

• Exploit: change the last byte of canary one at a time

• if correct, executed normally

• if wrong, terminated

• 2^64 → 2^8 x 8 (now, tractable!)

• e.g., Apache stack overflow

9

Lab08: Miscellaneous
• Integer overflow

• Web

• Race condition

• Interesting exploit techniques, so miscellaneous

10

CS101: Integer Representation

Ref https://en wikipedia org/wiki/Integer overflow

11

https://en.wikipedia.org/wiki/Integer_overflow

CS101: Two’s Complement Representation

e.g., in x86 (32-bit, 4-byte):
 - 0x00000000 -> 0
 - 0xffffffff -> -1
 - 0x7fffffff -> 2147483647 (INT_MAX)
 - 0x80000000 -> -2147483648 (INT_MIN)

Ref. https://en.wikipedia.org/wiki/Two's_complement

12

https://en.wikipedia.org/wiki/Two's_complement

Arithmetic with Two’s Complements
• One instruction works for both sign/unsigned integers (i.e., add, sub, mul)

• e.g., add reg1, reg2 (not distinguishing signedness of reg1/2)

• Properties:

• Non-symmetric representation of range, so single 0

• MSB represents signedness: 1 means negative, 0 means non-negative

13

Arithmetic with Two’s Complements
• One instruction works for both sign/unsigned integers (i.e., add, sub, mul)

• e.g., add reg1, reg2 (not distinguishing signedness of reg1/2)

• Properties:

• Non-symmetric representation of range, so single 0

• MSB represents signedness: 1 means negative, 0 means non-negative

0x00000001 + 0x00000002 = 0x00000003 (1 + 2 = 3)
0xffffffff + 0x00000002 = 0x00000001 (-1 + 2 = 1)
0xffffffff + 0xfffffffe = 0xfffffffd (-1 +-2 =-3)

range(signed integer) = [-2^31, 2^31-1] = [-2147483648, 2147483647]
range(unsigned integer) = [0, 2^32-1] = [0, 4294967295]

14

Question!
• Then, how to interpret the arithmetic result?

 ; 0xffffffff + 0xfffffffe = 0xfffffffd (-1 +-2 =-3)

 mov eax, 0xffffffff ; eax = 0xffffffff
 mov ebx, 0xfffffffd ; ebx = 0xfffffffe
 add eax, ebx ; eax = 0xfffffffd
 ; eax = 0xfffffffd
 ; 1) is it -3?
 ; 2) is it 4294967293 (== 0xfffffffd)?

15

Idea: Using Status Flags (E/RFLAGS)
• CF: overflow of unsigned arithmetic operations

• OF: overflow of signed arithmetic operations

0x00000001 + 0x00000002 = 0x00000003 (1 + 2 = 3)
 -> CF: ? OF: ? SF: ?

16

Idea: Using Status Flags (E/RFLAGS)
• CF: overflow of unsigned arithmetic operations

• OF: overflow of signed arithmetic operations

0x00000001 + 0x00000002 = 0x00000003 (1 + 2 = 3)
 -> CF: 0 OF: 0 SF: 0
0xffffffff + 0x00000002 = 0x00000001 (-1 + 2 = 1)
 -> CF: ? OF: ? SF: ?

17

Idea: Using Status Flags (E/RFLAGS)
• CF: overflow of unsigned arithmetic operations

• OF: overflow of signed arithmetic operations

0x00000001 + 0x00000002 = 0x00000003 (1 + 2 = 3)
 -> CF: 0 OF: 0 SF: 0
0xffffffff + 0x00000002 = 0x00000001 (-1 + 2 = 1)
 -> CF: 1 OF: 0 SF: 0
0x80000000 + 0xffffffff = 0x7fffffff (-2147483648 + -1 = 2147483647)
 -> CF: ? OF: ? SF: ?

18

Idea: Using Status Flags (E/RFLAGS)
• CF: overflow of unsigned arithmetic operations

• OF: overflow of signed arithmetic operations

0x00000001 + 0x00000002 = 0x00000003 (1 + 2 = 3)
 -> CF: 0 OF: 0 SF: 0
0xffffffff + 0x00000002 = 0x00000001 (-1 + 2 = 1)
 -> CF: 1 OF: 0 SF: 0
0x80000000 + 0xffffffff = 0x7fffffff (-2147483648 + -1 = 2147483647)
 -> CF: 1 OF: 1 SF: 0
0x7fffffff + 0x00000001 = 0x80000000 (2147483647 + 1 = -2147483648)
 -> CF: ? OF: ? SF: ?

19

Idea: Using Status Flags (E/RFLAGS)
• CF: overflow of unsigned arithmetic operations

• OF: overflow of signed arithmetic operations

0x00000001 + 0x00000002 = 0x00000003 (1 + 2 = 3)
 -> CF: 0 OF: 0 SF: 0
0xffffffff + 0x00000002 = 0x00000001 (-1 + 2 = 1)
 -> CF: 1 OF: 0 SF: 0
0x80000000 + 0xffffffff = 0x7fffffff (-2147483648 + -1 = 2147483647)
 -> CF: 1 OF: 1 SF: 0
0x7fffffff + 0x00000001 = 0x80000000 (2147483647 + 1 = -2147483648)
 -> CF: 0 OF: 1 SF: 1

20

C’s Integer Representation
 x86 (32b) x86_64 (64b)
 char : 1 byte 1 byte
 unsigned char : 1 byte 1 byte
 short : 2 bytes 2 bytes
 unsigned short : 2 bytes 2 bytes
 int : 4 bytes 4 bytes
 unsigned int : 4 bytes 4 bytes
(*) long : 4 bytes 8 bytes
(*) unsigned long : 4 bytes 8 bytes
 long long : 8 bytes 8 bytes
 unsigned long long : 8 bytes 8 bytes
(*) size_t : 4 bytes 8 bytes
(*) ssize_t : 4 bytes 8 bytes
(*) void* : 4 bytes 8 bytes

21

Thinking of C’s Type/Precision Conversion
• Lower → higher precision

 char -> int
 [-128, 127] -> [-128, 127]

22

Thinking of C’s Type/Precision Conversion
• Lower → higher precision

 char -> int
 [-128, 127] -> [-128, 127]
 [0x80, 0x7f] -> [0xffffff80, 0x0000007f]
 ------> sign extended (e.g., movsx)

 unsigned char -> unsigned int
 [0, 255] -> [0, 255]

23

Thinking of C’s Type/Precision Conversion
• Lower → higher precision

 char -> int
 [-128, 127] -> [-128, 127]
 [0x80, 0x7f] -> [0xffffff80, 0x0000007f]
 ------> sign extended (e.g., movsx)

 unsigned char -> unsigned int
 [0, 255] -> [0, 255]
 [0, 0xff] -> [0, 0x000000ff]
 ------> zero extended (e.g., movzx)

24

Thinking of C’s Type/Precision Conversion
• Higher → lower precision (what’s correct mappings?)

• Mathematically complex, but architecturally simple (truncation!)

 int -> char
[-2147483649, 2147483647] -> [-128, 127]
 [0x80000000, 0x7fffffff] -> [0x80, 0x7f]

 unsigned int -> unsigned char
 [0, 4294967295] -> [0, 255]
 [0, 0xffffffff] -> [0, 0xff]

 both simply, eax -> al (by processor)

25

CS101: Question?
char c1 = 100;
char c2 = 3;
char c3 = 4;

c1 = c1 * c2 / c3;

26

CS101: Question?
char c1 = 100;
char c2 = 3;
char c3 = 4;

c1 = c1 * c2 / c3;
 ------- Q1?
 ------------ Q2?

 1) 300 / 4 = 75
 2) 300 (0x12c, which is > 1 byte) -> 0x2c / 4 = 11

27

Basic Concept: Integer Promotion
• Before any arithmetic operations,

• All integer types whose size is smaller than sizeof(int):

1. Promote to int (if int can represent the whole range)

2. Promote to unsigned int (if not)

28

Basic Concept: Integer Promotion
• Before any arithmetic operations,

• All integer types whose size is smaller than sizeof(int):

1. Promote to int (if int can represent the whole range)

2. Promote to unsigned int (if not)

e.g.,

c1 = (int)c1 * (int)c2 / (int)c3;
 = 100 * 3 / 4
 = 300 / 4
 = 75

29

CS101: Comparing un/signed ints
 int si = -1;
 unsigned int ui = 1;

 if (si < ui) {
 return true; // Q1?
 } else {
 return false; // Q2?
 }

30

Example: char/unsigned char Addition
• Promote to int (if int can represent the whole range)

 // by rule 1. -> (1)
 char sc = SCHAR_MAX;
 unsigned char uc = UCHAR_MAX;

 long long sll = sc + uc;

 1) (long long)((int)sc + (int)uc)?
 2) (long long)sc + (long long)uc?

31

Example: int/unsigned int Comparison
• Promote to unsigned int (if not)

 // by rule 2. -> (2)
 int si = -1;
 unsigned int ui = 1;

 printf("%d\n", (int)(si < ui));
 1) ui promotes to int
 = -1 < 1
 = 1
 2) si promotes to unsigned int
 = 0xffffffff < 1
 = 0

32

Remark: Undefined Behaviors
• Overflow of unsigned integers are well-defined (i.e., wrapping)

• Overflow of signed integers are undefined

• But well-defined to the processor (i.e., just wrapping in x86)

• Optimization takes advantages of this, making it hard to understand

33

CS101: Int. Ovfl. and Undefined Behavior
1. (in x86_64) what does the expression 1 > 0 evaluate to?
 (a) 0 (b) 1 (c) NaN (d) -1 (e) undefined

34

CS101: Int. Ovfl. and Undefined Behavior
1. (in x86_64) what does the expression 1 > 0 evaluate to?
 (a) 0 (b) 1 (c) NaN (d) -1 (e) undefined

>> (b)

 (int) 1 > (int) 0

35

CS101: Int. Ovfl. and Undefined Behavior
2. (unsigned short)1 > -1?
 (a) 1 (b) 0 (c) -1 (d) undefined

36

CS101: Int. Ovfl. and Undefined Behavior
2. (unsigned short)1 > -1?
 (a) 1 (b) 0 (c) -1 (d) undefined

>> (a)

 unsigned short can be represented by int
 (int)(unsigned short)1 > (int)-1

37

CS101: Int. Ovfl. and Undefined Behavior
3. -1U > 0?
 (a) 1 (b) 0 (c) -1 (d) undefined

38

CS101: Int. Ovfl. and Undefined Behavior
3. -1U > 0?
 (a) 1 (b) 0 (c) -1 (d) undefined

>> (a)

 unsigned int can't be represented by int,
 so promote to unsigned int
 (unsigned int)(-1U) = 0xffffffff > 0

39

CS101: Int. Ovfl. and Undefined Behavior
5. abs(-2147483648), abs(INT_MIN) in x86_32?
 (a) 0 (b) < 0 (c) > 0 (d) NaN

40

CS101: Int. Ovfl. and Undefined Behavior
5. abs(-2147483648), abs(INT_MIN) in x86_32?
 (a) 0 (b) < 0 (c) > 0 (d) NaN

>> (b)
 Undefined, but the way the processor works:

 int abs (int i) {
 return i < 0 ? -i : i;
 }

 Q. What about in x86 (64-bit)?

41

CS101: Int. Ovfl. and Undefined Behavior
6. 1U << 0?
 (a) 1 (b) 4 (c) UINT_MAX (d) 0 (e) undefined

42

CS101: Int. Ovfl. and Undefined Behavior
6. 1U << 0?
 (a) 1 (b) 4 (c) UINT_MAX (d) 0 (e) undefined

>> (a)

43

CS101: Int. Ovfl. and Undefined Behavior
7. 1U << 32?
 (a) 1 (b) 4 (c) UINT_MAX (d) INT_MIN (e) 0 (f) undefined

44

CS101: Int. Ovfl. and Undefined Behavior
7. 1U << 32?
 (a) 1 (b) 4 (c) UINT_MAX (d) INT_MIN (e) 0 (f) undefined

>> (f) in C

 x86 (32-bit), 1U << 32 == 1!
 shl edx,cl

 Q. 1U << -1?

45

CS101: Int. Ovfl. and Undefined Behavior
8. -1L << 2?
 (a) 0 (b) 4 (c) INT_MAX (d) INT_MIN (e) undefined

46

CS101: Int. Ovfl. and Undefined Behavior
8. -1L << 2?
 (a) 0 (b) 4 (c) INT_MAX (d) INT_MIN (e) undefined

>> (e) in C

 shift operations on sign integers are undefined

 x86 (32-bit), -1L << 2 == -4!
 edx = 0xffffffff
 cl = 2
 shl edx,cl
 vs.
 sal (signed shift, arithmatic shift)

47

CS101: Int. Ovfl. and Undefined Behavior
9. INT_MAX + 1?
 (a) 0 (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

48

CS101: Int. Ovfl. and Undefined Behavior
9. INT_MAX + 1?
 (a) 0 (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

>> (e) in C

 overflow in sign integers are undefined!

 x86 (32-bit), 0x7fffffff + 1 = 0x80000000
 eax = 0x7fffffff
 ecx = 1
 add eax, ecx

49

CS101: Int. Ovfl. and Undefined Behavior
• Q. How does the compiler take advantage of undefined behaviors?

 int a = atoi(argv[1]);
 if (a > 0) {
 if (a + 1 > 0) {
 printf("a+1 > 0\n");
 } else {
 printf("?!\n");
 }
 }

50

CS101: Int. Ovfl. and Undefined Behavior
10. UINT_MAX + 1?
 (a) 0 (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

51

CS101: Int. Ovfl. and Undefined Behavior
10. UINT_MAX + 1?
 (a) 0 (b) 1 (c) INT_MAX (d) UINT_MAX (e) undefined

>> (a)

52

CS101: Int. Ovfl. and Undefined Behavior
11. -INT_MIN?
 (a) 0 (b) 1 (c) INT_MAX (d) UINT_MAX (e) INT_MIN
 (f) undefined

53

CS101: Int. Ovfl. and Undefined Behavior
11. -INT_MIN?
 (a) 0 (b) 1 (c) INT_MAX (d) UINT_MAX (e) INT_MIN
 (f) undefined

>> (f) in C but reuslts in (e)

54

CS101: Int. Ovfl. and Undefined Behavior
12. -1L > 1U? on x86_64 and x86
 (a) (0, 0) (b) (1, 1) (c) (0, 1) (d) (1, 0)
 (e) undefined

55

CS101: Int. Ovfl. and Undefined Behavior
12. -1L > 1U? on x86_64 and x86
 (a) (0, 0) (b) (1, 1) (c) (0, 1) (d) (1, 0)
 (e) undefined

>> (c)

 x86_64: sizeof(long) > sizeof(unsigned int)
 -> (long)-1L > (long)1U
 x86: sizeof(long) == sizeof(unsigned int)
 -> (unsigned int)-1L > (unsigned int) 1U

56

Today’s Tutorial
• In-class tutorial:

• Logical vulnerability

• Race condition and commnadline injection

$ ssh lab08@3.95.14.86
Password: <password>

$ cd tut08-logic-bugs

57

