
Finding SQL Injection Vulnerabilities
in Server-side SQL Libraries
 using Symbolic Execution

Kangqi Ni Xiangyu Li Taesoo Kim
Georgia Institute of Technology

Overview
● Workflow

○ Using symbolic execution to explore program paths
systematically, with user input marked as symbolic
values

○ For each path explored, extract the symbolic
expression of the resulting query statement and the
path condition.

○ There is a potential vulnerability if the query could
potentially contain sensitive characters that are from
user input.

Symbolic query representation
Query statement:

SELECT * from login where user = ‘<sym_username>’

is represented as:
(Concat (Concat “SELECT * from login where user = ‘”
(Replace sym_username “‘“ “‘‘”) “‘”)

where the variable sym_username is from user input

SQL Injection Condition
Query potentially contains (unescaped) single quote originated from user
inputs, allowing breaking out of string contexts.
● SQL injection condition construction

○ remove single quote literals added by the library code from the
symbolic expression of the query string

○ remove escaped single quotes from the query string
○ injection condition := (the processed query string could still possibly

contain single quotes && pc)
The SQL injection condition is sent to the constraint solver to determine its
satisfiability.

Example
(Concat (Concat “SELECT * from login where user = ‘”
(Replace sym_username “‘“ “‘‘”) “‘”)

Injection condition is constructed as:

(Contains (Replace (Concat (Concat “SELECT * from login
where user = ” (Replace sym_username “‘“ “‘‘”) “”) “‘‘”
“”) “‘”)

&&

path_condition

Example
(Concat (Concat “SELECT * from login where user = ‘”
(Replace sym_username “‘“ “‘‘”) “‘”)

Injection condition is constructed as:

(Contains (Replace (Concat (Concat “SELECT * from login
where user = ” (Replace sym_username “‘“ “‘‘”) “”) “‘‘”
“”) “‘”)

&&

path_condition

Implementation

● Symbolic(concolic) execution engine
○ adapted from the symbolic execution engine in

Commuter*
○ performs simultaneous concrete/symbolic execution
○ works for Python programs
○ supports symbolic operations on integers and strings

Commuter: https://github.com/aclements/commuter

Implementation

● Constraint solver
○ Z3 by Microsoft
○ with Z3-str extension from Purdue University to

support string operations

Experiment
● sqlalchemy 0.9.8

○ http://www.sqlalchemy.org/
○ SQLAlchemy is the Python SQL toolkit and Object

Relational Mapper that gives application developers
the full power and flexibility of SQL

● sqlite3
○ it provides a SQL interface compliant with the DB-

API 2.0 specification Not able to get complete query
due to internal mechanism on prepared statements

Experiment Cont.

● Python-sql 0.4
○ https://code.google.com/p/python-sql/
○ python-sql is a library to write SQL queries in a

pythonic way

● Our python sql library
○ it is a library to do sanity on user inputs by escaping

apostrophes

Test Case

● Python-sql
○ simple selects

■ 4 test cases
○ select with where condition

■ 3 test cases
○ select with join

■ 1 test case
○ https://pypi.python.org/pypi/python-sql

■ symoblize all the user-defined strings in the query

https://pypi.python.org/pypi/python-sql
https://pypi.python.org/pypi/python-sql

Test Case Cont.

● Our python sql library
○ simple select

■ 1 test case
■ symbolize table name and column field

○ select with where condition
■ 1 test case
■ symbolize table name, column field and where

clause

Example
def sanity(self, raw_str):

 sanity_str = raw_str

 if len(raw_str) < 50:

 replace(sanity_str,

 ‘“‘, ‘’)

 replace(sanity_str,

 “‘“, “”)

 return sanity_str

SQL injection condition:
And(Contains(Concat(Concat(Concat
(Concat("SELECT ", Replace
(sym_colname, "'", "")), " FROM "),
sym_tname), ""), "'"), And(And(And
(And(And((Length(sym_tname) < 50) ==
False, (Length(sym_tname) > 50) ==
False), (Length(sym_colname) < 50)
== True), Contains(sym_colname, """)
== False), Contains(sym_colname,
"'") == True), Contains(Replace
(sym_colname, "'", ""), "'") ==
False))

Limitation
● String Solver

○ Z3-str (FSE’13)
■ Pro: support both string and non-string

operations
■ Con: replace operation is not powerful

● replace the first occurrence
● timeout when multiple replace operations are used

○ HAMPI (ISSTA’09)
○ DPRLE (PLDI’09)
○ Rex (ICST’10)

Limitation cont.
Z3-str input file

(declare-variable t String)

(assert (Contains (Replace (Replace t "a" "") "a" "")
"a"))

(check-sat)

(get-model) Always Timeout!

Conclusion

● Findings:
○ it is hard to capture complete sql query in some

python sql libraries
○ limitations on the state-of-art string solver

● Designings:
○ our sql library benchmark
○ sql injection condition encoding

● Useful when string solver gets improved

