
Finding SQL Injection Vulnerabilities
in Server-side SQL Libraries
 using Symbolic Execution

Kangqi Ni Xiangyu Li Taesoo Kim
Georgia Institute of Technology

Motivation

● SQL injection attacks used to be a severe
security threat

● Nowadays mitigated by the use of server-
side SQL libraries to pre-process user input
before submitting to the database.
○ Sensitive characters such as quotation marks are

escaped.

Motivation

● Inadequate validation of the user data in the
SQL libraries would cause serious security
issues
○ Users of the libraries typically trust the library code
○ Potential large population of certain SQL libraries

Overview

● We propose an automated technique that
tries to find SQL injection vulnerabilities in
server-side SQL libraries.
○ Execute library code symbolically.
○ Examine the relation between the user input and the

SQL statement passed to the database.
○ There is a potential vulnerability if the pre-processed

user input still contains sensitive characters.

Past Approach

● Defensive Coding
● Dynamic Monitoring
● Black-box Test Generation
● Taint Analysis
● Query Inspection

○ e.g., sql library

Our Problem Scope

● Pick sql library as subject, and verify its
soundness

Symbolic Execution

● Reason about program behaviors on
potentially infinite set of possible input

● Produce a concrete input / trace that leads
execution to reach a particular program point

Our Approach

1. Automatically generate inputs with the help
of concolic execution

2. Dynamically track taint to determine how
input affects sensitive sinks

3. Mutate inputs to produce exploits by
replacing tainted part with shady strings [1]

[1] HAMPI: A Solver for String Constraints, ISSTA 2009

Evaluation
We’ll run our technique on selected server-side SQL libraries to discover
injection vulnerabilities.
This project is risky by nature.
● There might be no injection vulnerabilities in our subjects.
● Exploration space is limited by the symbolic execution library and our

computational resources. The exploration space may not be sufficient to
discover vulnerabilities.

● The ability of solving the constraint is limited by the constraint solver. Our
proposed technique involved solving complicated string-related constraints,
which is known to be difficult.

We’ll also use manually crafted simple subjects with known vulnerabilities.

Plan
-- 11/3/2014. Explore past research on related topics
-- 11/17/2014. Implement the automated symbolic exploration of the SQL
libraries. Implement constraint solving (and probably, some optimizations).
-- 11/24/2014. Conduct experiments on selected SQL libraries to see whether
we could discover injection vulnerabilities.
-- 12/1/2014. Prepare project demo and presentation. Artifacts are camera-
ready.

