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Our goals for Haven

Secure, private execution

of unmodified applications ) -
(bugs ana a”) §r(?jﬁi:Se.rver

in an untrusted cloud

on commodity hardware
(Intel SGX)



Can you trust the cloud?

* Huge trusted computing base

* Privileged software
Hypervisor, firmware, ...

* Management stack

+ Staf Hypervisor
Sysadmins, cleaners, security, ...

* Law enforcement _

e Hierarchical security model
* Observe or modify any data
* Even if encrypted on disk / net




Current approaches



Hardware Security Modules

e Dedicated crypto hardware
* Expensive

 Limited set of APIs
* Key storage
* Crypto operations

* Protects the “crown jewels”, not general-purpose



Trusted hypervisors

* Use a small, secure, hypervisor

* Ensures basic security, such as strong isolation

Problem #1: system administrators

Problem #2: physical attacks (e.g. memory snooping)

Problem #3: tampering with hypervisor



Remote attestation

* Trusted hardware: TPM chip

e Basic idea:
e Signed measurement (hash) of privileged software
* Remote user checks measurement
* Incorrect attestation - compromised software

* Problem: what is the expected measurement?

* Cloud provider applies patches and updates
* Must trust provider for current hash value



What do we really want?
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Shielded execution

* Protection of specific program from rest of system
e cf. protection, isolation, sandboxing, etc.
* New term (older concept)

* Program unmodified, naive to threats

e Confidentiality and integrity of:
* The program
* |ts intermediate state, control flow, etc.
— Input and output may be encrypted

* Host may deny service, cannot alter behaviour



Threat model

* We assume a malicious cloud provider
* Convenient proxy for real threats

* All the provider’s software is malicious
* Hypervisor, firmware, management stack, etc.

* All hardware besides the CPU is untrusted
 DMA attacks, DRAM snooping, cold boot

* We do not prevent:
e Denial-of-service (don’t pay!)
e Side-channel attacks



Intel SGX




Intel SGX

* Hardware isolation for
an enclave

* New instructions to
establish, protect

e Call gate to enter

Enclave

* Remote attestation
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SGX at the hardware level

Virtual address space Physical memory

Code/data e

| Page table
~ mappings

i Encrypted &
integrity-protected
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SGX at the hardware level

Virtual address space Physical memory

Code/data S
R e
Page tf':\ble encrypted &
- PP s integrity-protected

B* Protected register file
B Secure control transfer
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Design challenge: lago attacks




lago attacks

* malloc() returns pointer to user’s stack

* Scheduler allows two threads to race in a mutex
» System has 379,283 cores and -42MB of RAM

* read () fails with EROFS

Our approach:
e Don’t try to check them all
* Admit OS into trusted computing base



Haven

[ e Unmodified binaries Enclave (protects guest from host)

* Subset of Windows,
enlightened to run in-process

/' Shields LibOS from lago attacks
* Includes typical kernel functionality
 Scheduling, VM, file system
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e Untrusted interface with host

(&
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Untrusted interface

* Host/guest mutual distrust EnCiove

* Policy/mechanism with a twist

* Virtual resource policy in guest
Virtual address allocation, threads

* Physical resource policy in host
Physical pages, VCPUs

e ~20 calls, restricted semantics
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Shield module

* Memory allocator, region manager
* Host commits/protects specific pages
* No address allocation

Private file system
Encrypted, integrity-protected VHD

e Scheduler
Don’t trust host to schedule threads

Enclave

] Drawbridge ABI
Exception handler Shield module

* Emulation of some instructions

e Sanity-check of untrusted inputs
* Anything wrong - panic!

e 23 KLoC (half in file system) _
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SGX limitations

1.

2.

3.

1.

Dynamic memory allocation and protection
* New instructions needed

Exception handling
* SGX doesn’t report page faults or GPFs to the enclave

Permitted instructions
RDTSC/RDTSCP needed, for practicality and performance

Thread-local storage
e Can’t reliably switch FS and GS



SGX limitations

1. Dynamic memory allocation and protection
* New instructions needed

2.

; Good news!

,' These are fixed in SGX v2
1.

e Can’t reliably switch FS and GS
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Performance evaluation

* Implemented and tested using SGX emulator
 Thanks, Intel!

* Problem: no SGX implementation yet
 Solution: model for SGX performance

1. TLB flush on Enclave crossings

2. Variable spin-delay for critical SGX instructions
* Enclave crossings
* Dynamic memory allocation, protection

1.Penalty for access to encrypted memory
* Slow overall system DRAM clock



Performance summary

* Depends on model parameters, details in paper
* 35% (Apache) — 65% (SQL Server) slowdown vs. VM

* Assumes 10k+ cycles SGX instructions, 30% slower RAM

* ... and you don’t have to trust the cloud!



What’s next?

* Rollback of persistent storage
* Requires more hardware or communication

* Untrusted time
* Network time sync, RDTSC

* Cloud management

* Suspend / resume / migrate applications
* Encrypted VLANS



Conclusion

* Closer to a true “utility computing” model
 Utility provides raw resources
* Doesn’t care what you do with them

* Why trust the cloud when you don’t have to?

Thanks!

baumann@microsoft.com
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