Shieldi
from an untrusted cloud

Andrew Baumann Marcus Peinado Galen Hunt

Microsoft Research

In the old days...

In the old days...

In the old days...

In the cloud

Trust...?

In the cloud

Trust...?

In the cloud

Trust...?

In the cloud

Trust...?

Our goals for Haven

Secure, private execution

of unmodified applications) -
(bugs ana a”) §r(?jﬁi:Se.rver

in an untrusted cloud

on commodity hardware
(Intel SGX)

Can you trust the cloud?

* Huge trusted computing base

* Privileged software
Hypervisor, firmware, ...

* Management stack

+ Staf Hypervisor
Sysadmins, cleaners, security, ...

* Law enforcement _

e Hierarchical security model
* Observe or modify any data
* Even if encrypted on disk / net

Current approaches

Hardware Security Modules

e Dedicated crypto hardware
* Expensive

 Limited set of APIs
* Key storage
* Crypto operations

* Protects the “crown jewels”, not general-purpose

Trusted hypervisors

* Use a small, secure, hypervisor

* Ensures basic security, such as strong isolation

Problem #1: system administrators

Problem #2: physical attacks (e.g. memory snooping)

Problem #3: tampering with hypervisor

Remote attestation

* Trusted hardware: TPM chip

e Basic idea:
e Signed measurement (hash) of privileged software
* Remote user checks measurement
* Incorrect attestation - compromised software

* Problem: what is the expected measurement?

* Cloud provider applies patches and updates
* Must trust provider for current hash value

What do we really want?

;,
S

AN
RO

a

Shielded execution

* Protection of specific program from rest of system
e cf. protection, isolation, sandboxing, etc.
* New term (older concept)

* Program unmodified, naive to threats

e Confidentiality and integrity of:
* The program
* |ts intermediate state, control flow, etc.
— Input and output may be encrypted

* Host may deny service, cannot alter behaviour

Threat model

* We assume a malicious cloud provider
* Convenient proxy for real threats

* All the provider’s software is malicious
* Hypervisor, firmware, management stack, etc.

* All hardware besides the CPU is untrusted
 DMA attacks, DRAM snooping, cold boot

* We do not prevent:
e Denial-of-service (don’t pay!)
e Side-channel attacks

Intel SGX

Intel SGX

* Hardware isolation for
an enclave

* New instructions to
establish, protect

e Call gate to enter

Enclave

* Remote attestation

14

SGX at the hardware level

Virtual address space Physical memory

Code/data e

| Page table
~ mappings

i Encrypted &
integrity-protected

15

SGX at the hardware level

Virtual address space Physical memory

Code/data S
R e
Page tf':\ble encrypted &
- PP s integrity-protected

B* Protected register file
B Secure control transfer

15

Design challenge: lago attacks

lago attacks

* malloc() returns pointer to user’s stack

* Scheduler allows two threads to race in a mutex
» System has 379,283 cores and -42MB of RAM

* read () fails with EROFS

Our approach:
e Don’t try to check them all
* Admit OS into trusted computing base

Haven

[e Unmodified binaries Enclave (protects guest from host)

* Subset of Windows,
enlightened to run in-process

/' Shields LibOS from lago attacks
* Includes typical kernel functionality
 Scheduling, VM, file system

d
7))
-

L

=) W

L

©

e Untrusted interface with host

(&

18

Untrusted interface

* Host/guest mutual distrust EnCiove

* Policy/mechanism with a twist

* Virtual resource policy in guest
Virtual address allocation, threads

* Physical resource policy in host
Physical pages, VCPUs

e ~20 calls, restricted semantics

19

Shield module

* Memory allocator, region manager
* Host commits/protects specific pages
* No address allocation

Private file system
Encrypted, integrity-protected VHD

e Scheduler
Don’t trust host to schedule threads

Enclave

] Drawbridge ABI
Exception handler Shield module

* Emulation of some instructions

e Sanity-check of untrusted inputs
* Anything wrong - panic!

e 23 KLoC (half in file system) _

20

SGX limitations

1.

2.

3.

1.

Dynamic memory allocation and protection
* New instructions needed

Exception handling
* SGX doesn’t report page faults or GPFs to the enclave

Permitted instructions
RDTSC/RDTSCP needed, for practicality and performance

Thread-local storage
e Can’t reliably switch FS and GS

SGX limitations

1. Dynamic memory allocation and protection
* New instructions needed

2.

; Good news!

,' These are fixed in SGX v2
1.

e Can’t reliably switch FS and GS

21

Performance evaluation

* Implemented and tested using SGX emulator
 Thanks, Intel!

* Problem: no SGX implementation yet
 Solution: model for SGX performance

1. TLB flush on Enclave crossings

2. Variable spin-delay for critical SGX instructions
* Enclave crossings
* Dynamic memory allocation, protection

1.Penalty for access to encrypted memory
* Slow overall system DRAM clock

Performance summary

* Depends on model parameters, details in paper
* 35% (Apache) — 65% (SQL Server) slowdown vs. VM

* Assumes 10k+ cycles SGX instructions, 30% slower RAM

* ... and you don’t have to trust the cloud!

What’s next?

* Rollback of persistent storage
* Requires more hardware or communication

* Untrusted time
* Network time sync, RDTSC

* Cloud management

* Suspend / resume / migrate applications
* Encrypted VLANS

Conclusion

* Closer to a true “utility computing” model
 Utility provides raw resources
* Doesn’t care what you do with them

* Why trust the cloud when you don’t have to?

Thanks!

baumann@microsoft.com

25

