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Windows 8 Security Overview

Secure Development '

Securing After the Boot




Framing the problem with exploit economics
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History of exploit mitigations on Windows
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The state of memory safety exploits

Most systems are not
compromised by exploits

Y4

Most exploits target third
party applications

Y4

Most exploits target older
versions of Windows (e.g. XP)

\_
f

Most exploits fail when
mitigations are enabled

Y4

Exploits that bypass
mitigations & target the latest
products do exist

e About 6% of MSRT detections were likely caused by exploits [~ ]

* Updates were available for more than a year for most of the exploited
issues [~ 7]

¢ 11 of 13 CVEs targeted by popular exploit kits in 2011 were for issues in
non-Microsoft applications [ /]

® Only 5% of 184 sampled exploits succeeded on Windows 7 [ ]
¢ ASLR and other mitigations in Windows 7 make exploitation costly [ ']

¢ 14 of 19 exploits from popular exploit kits fail with DEP enabled [ ']
* 89% of 184 sampled exploits failed with EMET enabled on XP [ "]

e Zero-day issues were exploited in sophisticated attacks (Stuxnet, Duqu)
e Exploits were written for Chrome and IE9 for Pwn20wn 2012

Bottom line: we must continue to increase the cost of exploitation for attackers



Objectives & focus areas in Windows 8
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Enhanced /GS

Enhanced GS stack buffer overrun protection
— Released with Visual Studio 2010 [1]
— Windows 8 is built with this enabled

GS heuristics now protect more functions
— Non-pointer arrays and POD structures

GS optimization removes unnecessary checks
— Safety proof means no check is needed

Closes gaps in protection
— MS04-035, MS06-054, MS07-017 (ANI)
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Range Checks

e Compiler-inserted array bounds check (via /GS)

CHAR Buffer[2506];
UINT i; // possibly attacker controlled

if (i >= ARRAYSIZE (Buffer)) { € compiler inserted

report rangecheckfailure() ;

}

Buffer[i] = 0;

 Completely mitigates certain vulnerabilities
— CVE-2009-2512, CVE-2010-2555

* Bounds check insertion is limited to specific scenarios
— Assignment of NUL to a fixed-size stack/global array
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Sealed optimization

* Optimization for “sealed” C++ types & methods

class COptionElement sealed : public CElement

{

DECLARE_CLASS TYPES(COptionElement, CElement)

e Virtual method calls become direct calls

Without sealed COptionElement *optionElement; With sealed

optionElement->IsEnabled() ; _-___“‘-\\:>
mov rax,qword ptr [rex] call CElement: :IsEnabled

call gword ptr [rax+920h]

* Eliminating indirect calls reduces exploitation attack surface
— Helps mitigate vulnerabilities like CVE-2011-1996
— Devirtualized ~4,500 calls in mshtml.dll and ~13,000 in mso.dl|
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Virtual Table Guard

Probabilistic mitigation for vulnerabilities that enable vtable ptr corruption

IE10 has enabled

this for a handful of
key classes in
mshtml.dll

CElement:: vftable’

VirtualMethodl
VirtualMethod?2
VirtualMethod3
VirtualMethod4

63700e88

63700e88

~vtguard

14



Force ASLR,

ADDRE
RANDOM

ntropy




Retrospective: ASLR

e ASLR was first introduced in Windows Vista
— Led to a big shift in attacker mentality

* Attackers now depend on gaps in ASLR
— EXEs/DLLs not linked with /DYNAMICBASE [2]
— Address space spraying (heap/JIT) [3]
— Predictable memory regions [4]
— Information disclosures [5]

* ASLR has been substantially improved in Windows 8
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Force ASLR

Many exploits depend on non-ASLR DLLs

0:000> !'dh dirapi \\
4B4C111C time date stamp Mon Jan 11 22:05:16 2010

1000 base of code

----- P Images are not
68000000 image base .
1000 section alignment > randomized unless the
00001000 size of heap commit DYNAMIC—BASE blt Is set
0 DLL characteristics
187280 [ 402F] address [size] of Export Directory

1869F4 [ C8] address [size] of Import Directory
19B000 [ 12178] address [size] of Resource Directory /}

Processes can now force non-ASLR images to be randomized

— Behaves as if an image’s preferred base is not available
— Bottom-up randomization provides entropy for these images

Processes must opt-in to receive this behavior
— Also supported on Windows 7 with KB2639308 installed

Outcome: attackers can no longer rely on non-ASLR images
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Bottom-up & top-down randomization

Top-down allocations Windows 7

PEESREESIENSIORERONE) * Heaps and stacks are randomized

PEBs/TEBs are randomized, but with limited entropy
VirtualAlloc and MapViewOfFile are not randomized
Predictable memory regions can exist as a result

Address space

Windows 8

» All bottom-up/top-down allocations are randomized
 Accomplished by biasing start address of allocations
('?Citfor[“m‘:fdfﬂ"actaﬂf’”f) * PEBs/TEBs now receive much more entropy

e Both are opt-in (EXE must be dynamicbase)

Outcome: predictable memory regions have been eliminated
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High entropy ASLR for 64-bit processes

ASLR in Windows 8 takes advantage of the large address space (8TB) of 64-bit processes

2lf=4aR=Tal{ o] o)A « 1 TB of variance in bottom-up start address
bottom-up e Breaks traditional address space spraying (heap/JIT)

randomization K Processes must opt-in to receive this behavior
\_

-
High entropy

top-down

. randomization

e 8 GB of variance in top-down start address

e Automatically enabled if top-down randomization is on

-
High entropy

image

. randomization

e Images based above 4 GB receive more entropy
e All system images have been moved above 4 GB

Outcome: probability of guessing an address is decreased and

disclosures of memory addresses must include more than the low 32 bits
19



ASLR entropy improvements

Windows 8

32-bit 64-bit 64-bit
(HE)

24
33
24

Windows 7

Entropy (in bits) by region 39-bit 64-bit

Bottom-up allocations (opt-in)
Stacks
Heaps

Top-down allocations (opt-in)

17

PEBs/TEBs 17

EXE images
DLL images
Non-ASLR DLL images (opt-in)

* 64-bit DLLs based below ASLR entropy is the same for both 64-bit processes receive much more
4GB receive 14 bits, EXEs 32-bit and 64-bit processes entropy on Windows 8, especially with
below 4GB receive 8 bits on Windows 7 high entropy (HE) enabled
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Removal of information disclosure vectors

* Information disclosures can be used to bypass ASLR

* Disclosure via an arbitrary read is now less reliable
— Predictable mappings have been eliminated

* SharedUserData is still predictable, but less useful

— Image pointers have been removed, breaking known techniques [4,6]

0:000> u ntdll!NtWriteVirtualMemory L6
ntdl1l!NtWriteVirtualMemory:

6a214724 802000000 mov eax, 2

6a214729 803000000 call ntdl1l!NtWriteVirtualMemory+0xd
(62214731)

6a21472e c21400 ret 14h

6a214731 8bd4 mov edx, esp

6a214733 0£34 sysenter

6a214735 c3 ret

0:000> dd 7f£fe0300 L1
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Retrospective: Windows Heap

* Windows Vista heap hardening was very effective [11]
— Only one documented exploit that corrupts metadata [9]

 New attacks have been proposed by researchers

— Corrupting the HEAP data structure [/]
— LFH bucket overwrite [/]
— LFH FreeEntryOffset corruption and depth desync [8,12]

* Real-world exploits target app data on the heap [10]
— No heap safeguards exist today for this
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2ap architecture

oed in Windows 8

Windows 8

The general design

HeapAlloc (heap, flags, size)

24



LFH desigh changes & integrity checks

Change in Windows 8 Impact
LFH is now a bitmap-based allocator LinkOffset corruption no longer possible []

Multiple catch-all EH blocks removed Exceptions are no longer swallowed

Prevents attacks that try to corrupt HEAP

HEAP handle can no longer be freed handle state [/]

Prevents attacks that enable reliable control

HEAP CommitRoutine encoded with global key of the CommitRoutine pointer [7]

Prevents unintended free of in-use heap
blocks [/]

Prevents various attacks that reallocate an
in-use block [2,11]

Validation of extended block header

Busy blocks cannot be allocated

Heap encoding is now enabled in kernel mode Better protection of heap entry headers [ “]

Outcome: attacking metadata used by the heap is now even more difficult
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Guard pages

* Guard pages are now used to partition the heap
— Designed to prevent & localize corruption in some cases
— Touching a guard page results in an exception

PAGE_NOACCESS

Heap memory Guard page

Heap memory

* |nsertion points for guard pages are constrained
— Large allocations
— Heap segments
— Max-sized LFH subsegments (probabilistic on 32-bit)
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Allocation order randomization

* Allocation order is now nondeterministic (LFH only)
— Exploits often rely on surgical heap layout manipulation [10]

— Randomization makes heap normalization unreliable
Windows 7 LFH block allocation behavior

Windows 8 LFH block allocation behavior

* Maximizing reliability is more challenging
— Application-specific and vulnerability-specific
— May require corrupting more data (increasing instability)
— May require allocating more data (triggering guard pages)
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Retrospective: Windows Kernel

* Kernel vulnerabilities have been less targeted

— Relatively few remote kernel exploits exist
— User mode exploitation is better researched

* Attack focus is shifting more toward the kernel
— Interest in sandbox escapes is increasing
— Local kernel exploitation techniques well-understood
— New kernel pool attacks have been proposed [13]
— Sophisticated remote kernel exploits exist [14,21]
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DEP is broadly enabled in the Windows 8 kernel

Many kernel memory regions were unnecessarily executable in Windows 7 and prior

| KB(PAE) | x4 | ARM

K

iz | x| x | [ w | wc
Nonpagedpool | X | X | X | X | x
Image datasections | X | X | W< | N | x|
-----

Idle/DPC/Initial stacks
Page table pages
PFN database

Systemcache | X
Shared user data
HAL heap

= executable

x| owx ] x|
x| wx ] x|
x| owx ] x|
X || ox
x| owx ] x|
ESEEF

= non-executable

Windows 8 introduces
NonPagedPoolNx for
non-executable non-

paged pool allocations

(default on ARM)

NX HAL heap and
NonPagedPoolNx break
the assumptions of
exploits for MS09-050
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Kernel ASLR improvements

e Kernel ASLR was first added in Server 2008 RTM

— 4 bits of entropy for drivers, 5 bits for NTOS/HAL
— Driver entropy was improved in Windows 7

* Entropy has been further improved in Windows 8

— Biasing of kernel segment base
— NTOS/HAL receive 22 bits (64-bit) and 12 bits (32-bit)
— Various boot regions also randomized (PO idle stack)
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Support for SMEP/PXN

* New processor security feature

— Prevents supervisor from executing code in user
pages

— Most exploits for local kernel EOPs rely on this today

— Requires Intel Ivy Bridge or ARM with PXN support

 SMEP/PXN + DEP make exploitation more difficult

— Strong mitigation for some issues (cve-2010-2743 from Stuxnet)
— Attackers need to leverage code in kernel images [15]
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NULL dereference protection

e Kernel NULL dereferences are a common issue
— Examples include MS08-025, MS08-061, MS09-001

* Local exploitation is generally straightforward
— NULL is part of the user mode address space
— Kernel currently allows user processes to map NULL page

 Windows 8 prohibits mapping of the first 64K

— All kernel NULL dereferences become a DoS (not EoP)
— NTVDM has been disabled by default as well
— Enabling NTVDM will disable NULL dereference protection
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Kernel pool integrity checks

* The kernel pool allocator is similar to the heap
— Implementation is very different, though

* New integrity checks block various attacks [13]
— Process quota pointer encoding
— Lookaside, delay free, and pool page cookies
— Poollndex bounds check
— Additional safe unlinking checks
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Other improvements

Safe unlinking has been enabled globally
— Previously only used in the heap and kernel pool
— Now applies to all usage of LIST_ENTRY, closing known gaps [16]
— New “FastFail” mechanism enables rapid & safe process termination

Improved entropy for GS and ASLR
— Use of PRNG seeded by TPM/RDRAND/other sources
— Hardcoded GS initialization is overridden by the OS
— Addresses weaknesses described in attack research [17,18]

Object manager hardened against reference count overflows

Resolved kernel information disclosure via certain system calls [22]
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ARM default settings

All applicable mitigations are enabled on ARM

__ ARM PE images
DEP and ASLR

ASLR (force relocate) N/A (all images are ASLR)

ASLR (bottom-up) _ Kernel will fail
to load images

oo

ASLR (high entropy) N/A (not 64-bit)

eapteminaton | o
KemelNuLdereerence | on

Lack of application compatibility concerns enables us to be more aggressive
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Application default settings

All applicable mitigations are enabled for Windows 8 Ul style apps
32 bit (x86) 64 bit (x64)

Default settings for

Optln Optln

o Lo o wa wa wa v

Internet Explorer 10 and the new Office also enable all applicable mitigations
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Enabling opt-in mitigations

Opt-in methods

* “MitigationOptions” Image File Execution Option (IFEO)

* Process creation attribute (via UpdateProcThreadAttribute)
* SetProcessMitigationPolicy API

* Linker flag

Opt-in mitigation IFEO | Proc Attr | API Linker flag
Bottom-up randomization /DYNAMICBASE (on EXE)
Top-down randomization /DYNAMICBASE (on EXE)

Bottom-up randomization /HIGHENTROPYVA (on EXE)
(high entropy)

ASLR /DYNAMICBASE
Force ASLR None

DEP /NXCOMPAT (on EXE)
SEHOP None*

Heap termination None*

* EXEs with a subsystem version >= 6.2 will automatically enable these mitigations
39



Expectations for exploits on Windows 8

* Writing exploits for Windows 8 will be very costly
— Some vulnerability classes are now entirely mitigated
— Many attack techniques are now broken or unreliable

* Attackers will likely focus their attention on
— Desktop apps that do not enable all applicable mitigations
— Desktop apps running on previous versions of Windows
— Refining methods of disclosing address space information
— Researching new exploitation techniques [20]

 We will continue to evolve our mitigation technologies
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Call to action

* Upgrade to Windows 8 and IE 10 ©

— 64-bit is best from a mitigations perspective
— Enable “Enhanced Protected Mode” for IE 10

e Software vendors
— Build your applications with Visual Studio 2012 [31]
— Enable new opt-in mitigations

* Driver writers
— Port your drivers to use NonPagedPoolNx
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