Exploit Mitigation Improvements
in Windows 8

Ken Johnson, Matt Miller
Microsoft Security Engineering Center (MSEC)

Black Hat USA 2012

Windows

Acknowledgements

Many individuals have worked very hard to deliver the improvements we will discuss

Charles Chen, Greg Colombo, Jason Garms, Stephen Hufnagel, Arun Kishan, Joe Laughlin, Pavel
Lebedynskiy, John Lin, Gov Maharaj, Hari Pulapaka, Pierre-Yves Santerre, Neeraj Singh, Evan Tice,
Valeriy Tsuryk, Suma Uppuluri, Landy Wang, Matthew Woolman

CLR/Silverlight

Reid Borsuk, Jesse Collins, Jeffrey Cooperstein, Nick Kramer

Visual Studio

Jonathan Caves, Tanveer Gani, Mark Hall, Lawrence Joel, Louis Lafreniere, Mark Levine, Steve
Lucco, Mark Roberts, Andre Vachon, YongKang Zhu

Internet Explorer

David Fields, Forbes Higman, Eric Lawrence, Zach Murphy, Justin Rogers

Microsoft Research

Richard Black, Miguel Castro, Manuel Costa, Ben Livshits, Jay Stokes, Ben Zorn

Microsoft Security
Engineering Center

Eugene Bobukh, Tim Burrell, Thomas Garnier, Nitin Kumar Goel, Ken Johnson, John Lambert, Matt
Miller, Dave Probert, Tony Rice, Richard Shupak, Julien Vanegue, Greg Wroblewski

Windows 8 Security Overview

Secure Development '

Securing After the Boot

Framing the problem with exploit economics

E. N
- ,\\\

\,,17_77‘ — - —
, 20
y .. . \
. 3aiNSs | | t to acquire vulnerability

Attacker
Return

‘ t A 1 rCosu‘w eaponize
o e . “ .Q'“ /

=

History of exploit mitigations on Windows

History of exploit mitigations on Windows

History of exploit mitigations on Windows

The state of memory safety exploits

Most systems are not
compromised by exploits

Y4

Most exploits target third
party applications

Y4

Most exploits target older
versions of Windows (e.g. XP)

_
f

Most exploits fail when
mitigations are enabled

Y4

Exploits that bypass
mitigations & target the latest
products do exist

e About 6% of MSRT detections were likely caused by exploits [~]

* Updates were available for more than a year for most of the exploited
issues [~ 7]

¢ 11 of 13 CVEs targeted by popular exploit kits in 2011 were for issues in
non-Microsoft applications [/]

® Only 5% of 184 sampled exploits succeeded on Windows 7 []
¢ ASLR and other mitigations in Windows 7 make exploitation costly [']

¢ 14 of 19 exploits from popular exploit kits fail with DEP enabled [']
* 89% of 184 sampled exploits failed with EMET enabled on XP ["]

e Zero-day issues were exploited in sophisticated attacks (Stuxnet, Duqu)
e Exploits were written for Chrome and IE9 for Pwn20wn 2012

Bottom line: we must continue to increase the cost of exploitation for attackers

Objectives & focus areas in Windows 8

Enhance

COD

ble guard

10

Enhanced /GS

Enhanced GS stack buffer overrun protection
— Released with Visual Studio 2010 [1]
— Windows 8 is built with this enabled

GS heuristics now protect more functions
— Non-pointer arrays and POD structures

GS optimization removes unnecessary checks
— Safety proof means no check is needed

Closes gaps in protection
— MS04-035, MS06-054, MS07-017 (ANI)

11

Range Checks

e Compiler-inserted array bounds check (via /GS)

CHAR Buffer[2506];
UINT i; // possibly attacker controlled

if (i >= ARRAYSIZE (Buffer)) { € compiler inserted

report rangecheckfailure() ;

}

Buffer[i] = 0;

 Completely mitigates certain vulnerabilities
— CVE-2009-2512, CVE-2010-2555

* Bounds check insertion is limited to specific scenarios
— Assignment of NUL to a fixed-size stack/global array

12

Sealed optimization

* Optimization for “sealed” C++ types & methods

class COptionElement sealed : public CElement

{

DECLARE_CLASS TYPES(COptionElement, CElement)

e Virtual method calls become direct calls

Without sealed COptionElement *optionElement; With sealed

optionElement->IsEnabled() ; _-___“‘-\\:>
mov rax,qword ptr [rex] call CElement: :IsEnabled

call gword ptr [rax+920h]

* Eliminating indirect calls reduces exploitation attack surface
— Helps mitigate vulnerabilities like CVE-2011-1996
— Devirtualized ~4,500 calls in mshtml.dll and ~13,000 in mso.dl|

13

Virtual Table Guard

Probabilistic mitigation for vulnerabilities that enable vtable ptr corruption

IE10 has enabled

this for a handful of
key classes in
mshtml.dll

CElement:: vftable’

VirtualMethodl
VirtualMethod?2
VirtualMethod3
VirtualMethod4

63700e88

63700e88

~vtguard

14

Force ASLR,

ADDRE
RANDOM

ntropy

Retrospective: ASLR

e ASLR was first introduced in Windows Vista
— Led to a big shift in attacker mentality

* Attackers now depend on gaps in ASLR
— EXEs/DLLs not linked with /DYNAMICBASE [2]
— Address space spraying (heap/JIT) [3]
— Predictable memory regions [4]
— Information disclosures [5]

* ASLR has been substantially improved in Windows 8

16

Force ASLR

Many exploits depend on non-ASLR DLLs

0:000> !'dh dirapi \\
4B4C111C time date stamp Mon Jan 11 22:05:16 2010

1000 base of code

----- P Images are not
68000000 image base .
1000 section alignment > randomized unless the
00001000 size of heap commit DYNAMIC—BASE blt Is set
0 DLL characteristics
187280 [402F] address [size] of Export Directory

1869F4 [C8] address [size] of Import Directory
19B000 [12178] address [size] of Resource Directory /}

Processes can now force non-ASLR images to be randomized

— Behaves as if an image’s preferred base is not available
— Bottom-up randomization provides entropy for these images

Processes must opt-in to receive this behavior
— Also supported on Windows 7 with KB2639308 installed

Outcome: attackers can no longer rely on non-ASLR images

17

Bottom-up & top-down randomization

Top-down allocations Windows 7

PEESREESIENSIORERONE) * Heaps and stacks are randomized

PEBs/TEBs are randomized, but with limited entropy
VirtualAlloc and MapViewOfFile are not randomized
Predictable memory regions can exist as a result

Address space

Windows 8

» All bottom-up/top-down allocations are randomized
 Accomplished by biasing start address of allocations
('?Citfor[“m‘:fdfﬂ"actaﬂf’”f) * PEBs/TEBs now receive much more entropy

e Both are opt-in (EXE must be dynamicbase)

Outcome: predictable memory regions have been eliminated

18

High entropy ASLR for 64-bit processes

ASLR in Windows 8 takes advantage of the large address space (8TB) of 64-bit processes

2lf=4aR=Tal{ o] o)A « 1 TB of variance in bottom-up start address
bottom-up e Breaks traditional address space spraying (heap/JIT)

randomization K Processes must opt-in to receive this behavior
_

-
High entropy

top-down

. randomization

e 8 GB of variance in top-down start address

e Automatically enabled if top-down randomization is on

-
High entropy

image

. randomization

e Images based above 4 GB receive more entropy
e All system images have been moved above 4 GB

Outcome: probability of guessing an address is decreased and

disclosures of memory addresses must include more than the low 32 bits
19

ASLR entropy improvements

Windows 8

32-bit 64-bit 64-bit
(HE)

24
33
24

Windows 7

Entropy (in bits) by region 39-bit 64-bit

Bottom-up allocations (opt-in)
Stacks
Heaps

Top-down allocations (opt-in)

17

PEBs/TEBs 17

EXE images
DLL images
Non-ASLR DLL images (opt-in)

* 64-bit DLLs based below ASLR entropy is the same for both 64-bit processes receive much more
4GB receive 14 bits, EXEs 32-bit and 64-bit processes entropy on Windows 8, especially with
below 4GB receive 8 bits on Windows 7 high entropy (HE) enabled

20

Removal of information disclosure vectors

* Information disclosures can be used to bypass ASLR

* Disclosure via an arbitrary read is now less reliable
— Predictable mappings have been eliminated

* SharedUserData is still predictable, but less useful

— Image pointers have been removed, breaking known techniques [4,6]

0:000> u ntdll!NtWriteVirtualMemory L6
ntdl1l!NtWriteVirtualMemory:

6a214724 802000000 mov eax, 2

6a214729 803000000 call ntdl1l!NtWriteVirtualMemory+0xd
(62214731)

6a21472e c21400 ret 14h

6a214731 8bd4 mov edx, esp

6a214733 0£34 sysenter

6a214735 c3 ret

0:000> dd 7f£fe0300 L1

21

Integrity

WIN

22

Retrospective: Windows Heap

* Windows Vista heap hardening was very effective [11]
— Only one documented exploit that corrupts metadata [9]

 New attacks have been proposed by researchers

— Corrupting the HEAP data structure [/]
— LFH bucket overwrite [/]
— LFH FreeEntryOffset corruption and depth desync [8,12]

* Real-world exploits target app data on the heap [10]
— No heap safeguards exist today for this

23

2ap architecture

oed in Windows 8

Windows 8

The general design

HeapAlloc (heap, flags, size)

24

LFH desigh changes & integrity checks

Change in Windows 8 Impact
LFH is now a bitmap-based allocator LinkOffset corruption no longer possible []

Multiple catch-all EH blocks removed Exceptions are no longer swallowed

Prevents attacks that try to corrupt HEAP

HEAP handle can no longer be freed handle state [/]

Prevents attacks that enable reliable control

HEAP CommitRoutine encoded with global key of the CommitRoutine pointer [7]

Prevents unintended free of in-use heap
blocks [/]

Prevents various attacks that reallocate an
in-use block [2,11]

Validation of extended block header

Busy blocks cannot be allocated

Heap encoding is now enabled in kernel mode Better protection of heap entry headers [“]

Outcome: attacking metadata used by the heap is now even more difficult

25

Guard pages

* Guard pages are now used to partition the heap
— Designed to prevent & localize corruption in some cases
— Touching a guard page results in an exception

PAGE_NOACCESS

Heap memory Guard page

Heap memory

* |nsertion points for guard pages are constrained
— Large allocations
— Heap segments
— Max-sized LFH subsegments (probabilistic on 32-bit)

26

Allocation order randomization

* Allocation order is now nondeterministic (LFH only)
— Exploits often rely on surgical heap layout manipulation [10]

— Randomization makes heap normalization unreliable
Windows 7 LFH block allocation behavior

Windows 8 LFH block allocation behavior

* Maximizing reliability is more challenging
— Application-specific and vulnerability-specific
— May require corrupting more data (increasing instability)
— May require allocating more data (triggering guard pages)

27

DEP, ASL
checks

WIN

tegrity

28

Retrospective: Windows Kernel

* Kernel vulnerabilities have been less targeted

— Relatively few remote kernel exploits exist
— User mode exploitation is better researched

* Attack focus is shifting more toward the kernel
— Interest in sandbox escapes is increasing
— Local kernel exploitation techniques well-understood
— New kernel pool attacks have been proposed [13]
— Sophisticated remote kernel exploits exist [14,21]

29

DEP is broadly enabled in the Windows 8 kernel

Many kernel memory regions were unnecessarily executable in Windows 7 and prior

| KB(PAE) | x4 | ARM

K

iz | x| x | [w | wc
Nonpagedpool | X | X | X | X | x
Image datasections | X | X | W< | N | x|

Idle/DPC/Initial stacks
Page table pages
PFN database

Systemcache | X
Shared user data
HAL heap

= executable

x| owx] x|
x| wx] x|
x| owx] x|
X || ox
x| owx] x|
ESEEF

= non-executable

Windows 8 introduces
NonPagedPoolNx for
non-executable non-

paged pool allocations

(default on ARM)

NX HAL heap and
NonPagedPoolNx break
the assumptions of
exploits for MS09-050

30

Kernel ASLR improvements

e Kernel ASLR was first added in Server 2008 RTM

— 4 bits of entropy for drivers, 5 bits for NTOS/HAL
— Driver entropy was improved in Windows 7

* Entropy has been further improved in Windows 8

— Biasing of kernel segment base
— NTOS/HAL receive 22 bits (64-bit) and 12 bits (32-bit)
— Various boot regions also randomized (PO idle stack)

31

Support for SMEP/PXN

* New processor security feature

— Prevents supervisor from executing code in user
pages

— Most exploits for local kernel EOPs rely on this today

— Requires Intel Ivy Bridge or ARM with PXN support

 SMEP/PXN + DEP make exploitation more difficult

— Strong mitigation for some issues (cve-2010-2743 from Stuxnet)
— Attackers need to leverage code in kernel images [15]

32

NULL dereference protection

e Kernel NULL dereferences are a common issue
— Examples include MS08-025, MS08-061, MS09-001

* Local exploitation is generally straightforward
— NULL is part of the user mode address space
— Kernel currently allows user processes to map NULL page

 Windows 8 prohibits mapping of the first 64K

— All kernel NULL dereferences become a DoS (not EoP)
— NTVDM has been disabled by default as well
— Enabling NTVDM will disable NULL dereference protection

33

Kernel pool integrity checks

* The kernel pool allocator is similar to the heap
— Implementation is very different, though

* New integrity checks block various attacks [13]
— Process quota pointer encoding
— Lookaside, delay free, and pool page cookies
— Poollndex bounds check
— Additional safe unlinking checks

34

Other improvements

Safe unlinking has been enabled globally
— Previously only used in the heap and kernel pool
— Now applies to all usage of LIST_ENTRY, closing known gaps [16]
— New “FastFail” mechanism enables rapid & safe process termination

Improved entropy for GS and ASLR
— Use of PRNG seeded by TPM/RDRAND/other sources
— Hardcoded GS initialization is overridden by the OS
— Addresses weaknesses described in attack research [17,18]

Object manager hardened against reference count overflows

Resolved kernel information disclosure via certain system calls [22]

35

ARM, Inbo

DEFA

plications

36

ARM default settings

All applicable mitigations are enabled on ARM

__ ARM PE images
DEP and ASLR

ASLR (force relocate) N/A (all images are ASLR)

ASLR (bottom-up) _ Kernel will fail
to load images

oo

ASLR (high entropy) N/A (not 64-bit)

eapteminaton | o
KemelNuLdereerence | on

Lack of application compatibility concerns enables us to be more aggressive

37

Application default settings

All applicable mitigations are enabled for Windows 8 Ul style apps
32 bit (x86) 64 bit (x64)

Default settings for

Optln Optln

o Lo o wa wa wa v

Internet Explorer 10 and the new Office also enable all applicable mitigations

38

Enabling opt-in mitigations

Opt-in methods

* “MitigationOptions” Image File Execution Option (IFEO)

* Process creation attribute (via UpdateProcThreadAttribute)
* SetProcessMitigationPolicy API

* Linker flag

Opt-in mitigation IFEO | Proc Attr | API Linker flag
Bottom-up randomization /DYNAMICBASE (on EXE)
Top-down randomization /DYNAMICBASE (on EXE)

Bottom-up randomization /HIGHENTROPYVA (on EXE)
(high entropy)

ASLR /DYNAMICBASE
Force ASLR None

DEP /NXCOMPAT (on EXE)
SEHOP None*

Heap termination None*

* EXEs with a subsystem version >= 6.2 will automatically enable these mitigations
39

Expectations for exploits on Windows 8

* Writing exploits for Windows 8 will be very costly
— Some vulnerability classes are now entirely mitigated
— Many attack techniques are now broken or unreliable

* Attackers will likely focus their attention on
— Desktop apps that do not enable all applicable mitigations
— Desktop apps running on previous versions of Windows
— Refining methods of disclosing address space information
— Researching new exploitation techniques [20]

 We will continue to evolve our mitigation technologies

40

Call to action

* Upgrade to Windows 8 and IE 10 ©

— 64-bit is best from a mitigations perspective
— Enable “Enhanced Protected Mode” for IE 10

e Software vendors
— Build your applications with Visual Studio 2012 [31]
— Enable new opt-in mitigations

* Driver writers
— Port your drivers to use NonPagedPoolNx

41

http://www.microsc

uting-Jobs/194701/

42

/or trademarks in the U.S. and/or other countries.
ecause Microsoft must respond to changing market
ation provided after the date of this presentation.

THIS PRESENTATION.

© 2012 Microsoft Corporation. All rights reserved.
The information herein is for informational purposes
conditions, it should not be interpreted to be a co
MICROSOFT MAKES N

43

10.
11.

12.

References

Enhanced GS in Visual Studio 2010. Tim Bur
http://blogs.technet.com/b/srd/archive dio-2010.aspx

Adobe CoolType SING Table “uniquel ploit. Sep, 2010.

http://dev.metasploit.com/redmi er/entry/modules/exploits/windows/
browser/adobe_cooltype sing.rb
Interpreter Exploitation: Pointe
http://www.semantiscope.co
Defeat Windows 7 Browser
Memory Retrieval Vulnerabil
http://www.eeye.com/eEyel
Win32 ASLR round 2. Justin
Attacking the Vista Heap. Be
http://www.lateralsecurity.cc
Understanding the Low Fragme
http://illmatics.com/Understanc
Modern Heap Exploitation using
Heap Feng Shui in JavaScript. Alex
Preventing the exploitation of user mod

http://blogs.technet.com/b/srd/archive/200
vulnerabilities.aspx

Ghost in the Windows 7 Allocator. Steven Seeley, 2012.
http://conference.hitb.org/hitbsecconf2012ams/materials/D2T2%20-%20Steven%20Seeley%20-%20Ghost%20In%20the
%20Windows%207%20Allocator.pdf

at Federal, 2010.

03/win32-aslr-round-2.html

arch/heap-feng-shui/heap-feng-shui.html

iller. 2009.
ation-of-user-mode-heap-corruption-

44

13.

14.

15.

16.
17.

18.
19.

20.
21.

22.

Kernel Pool Exploitation on Wi
https://media.blackhat.co

351 packets from trampo
http://blog.piotrbania.

SMEP: What is it, and
http://j00ru.vexilliu

VEH. Ben Hawkes.
Windows Kernel-mc
http://j00ru.vexilliu
Reducing the effec

Kernel Attacks thro
http://mista.nu/rese

ary, 2011.

[&a=2&t=sumry.

Windows 8 Heap Inte

More information on
http://blogs.technet.co

Subtle information disclosu
http://j00ru.vexillium.org/?p=

45

26.

27.
28.

29.

30.

31.

On the effectiveness of

46

