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Popular Native Code Systems (Not VISC) 

High performance software 
is largely shipped as native code 

System software is almost 
exclusively shipped as native code 

HPC applications Operating systems 

Media, Gaming, Finance, CAD, … Hypervisors 

Web browsers Compilers 

Database systems Managed language runtimes 

Libraries galore Communication / crypto libraries 

Loaders, linkers, GUI frameworks 

“VISC” == Ship code as Virtual ISA (e.g,. JVM, PTX) 
Native code is pervasive for two broad classes of software 



Static Compilation is NOT Enough 
Modern software architectures 
 Install-time configurations, software environments 
User-installed extensions, dynamically loaded libraries, layering 

Modern hardware architectures 
Diverse vector hardware, GPUs, accelerators in SoCs 

Modern security challenges due to untrusted code 
Browser extensions, mobile app markets, BYOD 

Need rich analyses and transformations on end-
user systems 

 



Proposal 
All future software should “ship” using Virtual ISAs. 
NOTE: Different systems can use different Virtual ISAs. 

• The security benefits are strong 

• There are no inherent performance penalties (and novel 
performance benefits are possible) 

• It is technically feasible and commercially acceptable 



Myth: Virtual ISA Threatens IP 
Fact: Binary code can be reverse engineered effectively 

using interactive tools + manual analysis 

• Better Solution #1: Encryption + Code Signing 

• Better Solution #2: Obfuscation tools (must not interfere 
with program analyses) 
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LLVM Virtual Instruction Set and IR 

;; LLVM Code 
int %SumArray(int* %A, int %Num) 
{ 
bb1: 
 %cond = icmp sgt i32 %Num, 0 
 br i1 %cond, label %bb2, label %bb3 
bb2: 
 %sum0 = phi  i32 [%t10, %bb2], [0, %bb1] 
 %iv   = phi  i64 [%inc, %bb2], [0, %bb1] 
 %t2   = getelementptr inbounds i32* %A, i64 %t7 
 %t3   = load  i32* %t2, align 4 
 %t4   = add nsw  i32 %t3, %sum0 
 %inc  = add nuw  i64 %iv, 1 
 %t5   = trunc i64 %iv to i32 
 %exitcond = icmp eq i32 %inc, %Num 
 br i1 %exitcond, label %bb3, label %bb2 
bb3: 
 %sum1  = phi  i32 [0, %bb1], [%t4, %bb2] 
 ret int %sum1 
} 

/* C Source Code */ 
int SumArray(int A[], int Num) 
{ 
  int i, sum = 0; 
  for (i = 0; i < Num; ++i) 
    sum += A[i]; 
  return sum; 
} 

• Simple, 3-address IR 
• Architecture-neutral 
• Language-neutral  
• Explicit CFG 
• Always in SSA form 
• Typed memory, regs  

LLVM enables sophisticated program analyses and transformations 



Why LLVM IR for ALLVM? (1 of 2) 
1. Fully executable virtual ISA 

• Language-neutral; hardware-neutral; and a rich IR 

• Extensive production-quality infrastructure and tools 

• Widely used: Apple, Google, Intel, QCOM, ARM, … 

• Numerous front-ends: C, C++, (Fortran), .NET, Swift, 
Python, Ruby, Haskell, … 

Available at:  llvm.org  
First release: October 2003 



Why LLVM IR for ALLVM? (2 of 2) 
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“For iOS™ apps, bitcode is the default, but optional.  
 For watchOS™ and tvOS™ apps, bitcode is required.”   
     -- iOS App Distribution Guide, Apple  

2. Emerging adoption as a Virtual ISA 



But Many Unanswered Questions 

Not enough research on benefits of a Virtual ISA 
For software in static languages (C, C++, Fortran, OpenMP, ...) 

Uses to date are limited, ad hoc, and haphazard 

• What are the benefits for performance? 

• What are the benefits for security? 

• What are the benefits for software reliability? 
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ALLVM Status 
Self-bootstrap: Clang (C++) : bash + cmake → make + clang →  
  bc2allvm → alltogether → allout / cache → alley 

Substantial userspace software, tools work in ALLVM: 
 xterm, libX11, vim, spidermonkey 
 openssl, openssh 
 (apache) httpd, nginx, redis, memcached, postgresql 
 subversion, git 
 binutils, coreutils, bash, zsh, tcsh 
 lua, perl, python, ocaml (the C-based bits anyway) 

Substantial capabilities for userspace: 
 Runs on top of existing Linux OS, or in Docker 
 Binary cache: Local and remote (trusted) 
 Nix package manager: Atomic software upgrades 

Adding more packages is “easy” if build system is somewhat sane 



ALLVM Research Goals: What are the Benefits? 

Security 
• Secure Virtual Architecture 

(John Criswell; PhD '14) 

Runner-up, ACM Doctoral 
Dissertation Award 
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Performance 
• Whole-system optimization; 

deduplication (Will Dietz) 

• Software specialization and 
debloating (Hashim Sharif) 

• allready: Binary-to-LLVM 
(Sandeep Dasgupta) 

• Autotuning: install-time search 
(Yishen Chen) 

• HPVM: Heterogeneous parallel 
systems (Maria Kotsifakou) 



Outline: Applications of ALLVM 
• Code deduplication with software multiplexing 

• Debloating via program customization 

• Binary translation to LLVM IR 

 



Sources of Code Duplication 
• Duplicated libraries across applications 

• Multiple versions of libraries or applications on a system 

• Duplicated functions or code fragments within / across 
applications 

 
Software multiplexing is a framework 

to address all three issues 
(current system addresses first two) 



Code Duplication Across Software Versions 
Multiple versions of a tool or library often co-exist on the same machine  

=> extensive duplication 



Code Duplication Across Programs in a Package 
Multiple tools in a package often share extensive code 

Nodes are functions (as hash value) 
Edges mark equivalence; colored regions are dense with edges 



Example: Code Deduplication with Allmux 

Build config Binaries 
size 

Libraries 
size Total size Performance Startup 

Static 590M 2.1M 592M Better Fast 

Shared 
(libllvm) 231M 38M 269M Worse Slow 

Shared 
(separate libs) 11M 93M 104M Worst Slowest 

Allmux 85M 0M 85M Best Fastest 

Size and performance of LLVM linux-x86-64 software release 



ALLVM Quasi-static Linking 
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Memory Usage with Shared Libraries 
E.g., 1-10 apps that 

use Qt toolkit 

Allmux uses 2.5x 
less RAM vs. static 
linking; 35% less 
than dynamic 

Allmux performance 
is much better than 
dynamic linking; 
comparable to static 

 

2.5X 

35% 



What’s the Secret? (1 of 2) 
1) Software Multiplexing: N pgms + K libs  1 pgm + K libs 

Exposes duplicated code between programs, libs 

int main(int argc, char* argv[], char* envp[]) { 
If (! strcmp(argv[0], “program-name1”) main1(argc, …); 
If (! strcmp(argv[0], “program-name2”) main2(argc, …); 
If (! strcmp(argv[0], “program-name3”) main3(argc, …); 
If (! strcmp(argv[0], “program-name4”) main4(argc, …); 
… 

} 
“Designed in” by a few packages, e.g., GCC 
Affects the build system heavily  hard to add manually today 



What’s the Secret? (1 of 2) 
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K+1 allexe’s 

What’s the Secret? (2 of 2) 

ALLVM  
linker 

2) Bitcode for all components including dynamic libraries  
enables linking before code generation 

 static linking without rewriting build system! 

LLVM 
code-gen 
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  Linked 
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Next Steps on Deduplication with ALLMUX 
• Identify equivalent functions #1: structural equivalence 

• Identify equivalent functions #2: semantic equivalence 

• Identify equivalent fragments: perhaps by hashing 

Towards a Bitcode Database 
The one repository to rule them all! 



Outline: Applications of ALLVM 
• Code deduplication with software multiplexing 

• Debloating via customization to a configuration 

• Binary translation to LLVM IR 

 



Configuration-based Slimming 

Customize for user-defined program configuration  
Generate specialized binaries  
Reducing code bloat as a result of specialization 

.allexe Speciali- 
zation 

Import 
config 

Code-gen 
.exe .allexe 

 Specialized 
pgm  

  Linked 
pgm 

.allexe 

  Install-time 
config info 



Specialization transforms 
1. Identify code that parses input configuration 

2. Fully unroll only the loop(s) that parse inputs 

3. Mark config variables that hold constant values 

4. Aggressive interprocedural const. propagation for 
marked variables only 

5. Aggressive constant evaluation, specialization 



Experiments 
Goal: Compare against existing state-of-the-art Partial 

Evaluation tool (Occam) 

Benchmarks: 
 7 OpenWRT programs: optimized for embedded systems  
 7 Commonly used Linux programs 
Yices – SMT Solver  

 18.35% Geom. mean code reduction across 14 programs 



OpenWRT programs 
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Binary to LLVM Translation 

Led by: Sandeep Dasgupta 
with Ed Schwartz (CMU) 



Binary-to-LLVM 
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allready: Binary-to-LLVM 
Preference: Only a few components will be binary 

Motivation 
Some software components will only be in binary format 
Existing tools inadequate: McSema, BAP, SecondWrite, Qemu 

Goal 
Extract “rich” LLVM IR from binary code 
Enable full set of ALLVM optimizations on partial-binary programs  
Needs variable info, type info, per-procedure stack frames 



Current Status 

McSema 
Binary LLVM Stack 

Recovery 
LLVM Variable 

Recovery 
LLVM Type 

Inference 
LLVM 

IR extracted by McSema is executable but very “low-level” 
Models runtime process stack as unified flat array 
Machine registers mapped in flat memory, not SSA virtual registers 
No information about variables, types, call graph, exceptions, etc. 

Added stack deconstruction 
Recovers individual stack frames per function 
Distinguishes current vs. parent frame pointers  
Tested using McSema test suite; custom test cases 

Partially done Ongoing Work 
IDAPro CFG 

Completed External; 
extending 

Commercial 



Stack Deconstruction 
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(Function Foo) 
(Function Foo) 

foo: 
    push %rbp 
    mov %rsp, %rbp 
    mov 16(%rbp), %rax 
    mov 24(%rbp), %r10 

foo: 
    push %rbp 
    mov %rsp, %rbp 
    mov 8(%parent_stack_end), %rax 
    mov 16(%parent_stack_end), %r10 



Ongoing Work 

• Identify variables and promote them as symbols 

• Represent every symbol in the IR with a meaningful  
type instead of the generic types provided by McSema 

unsigned int foo(char* buf) {  
 unsigned alligned_len = 0; 
 unsigned int c = strlen(buf);  
 if(c%8 == 0 ) {  
  return c;  
 } 
 alligned_len = 8* (c/8) + 8; 
 return allign_len;  
}  

Variable Names C Type 
1) buf char* 
2) c unsigned int 
3) alligned_len unsigned int 

1) and 2) inferred using strlen prototype 
3) inferred using arithmetic operation    



Takeaway Message 
Proposal 

All future software should ship as virtual ISAs 

• The security benefits are strong 

• There are no inherent performance penalties (and novel 
performance benefits are possible) 

• It is technically feasible and commercially acceptable 

http: // allvm.org 



Summary and Implications 

Application / product areas 

LLVM Compilers; Mobile software; Security 

HPVM Mobile and embedded SoCs; Accelerators 

DLVM DNN toolkits and systems 

ALLVM Late-stage software customization; debloating; 
autotuning 



Translation Validation for Increasing Trust in 
Compilation of Shipped Code 

Led by: Theodoros Kasampalis 
with Daejun Park and Prof. Grigore Rosu 



Cross-Language Program Equivalence 
with Application to LLVM 

 

Theodoros Kasampalis, PhD student 
Joint work with Daejun Park, Vikram Adve, Grigore Rosu 

 

47 



Motivation 
• Low trust in code generation process (bugs, undefined 

behaviors, etc.) 

 

• Existing solutions are not practical for verified code 
generation with production-quality compilers (e.g. LLVM) 

 
 Verified Compilers (e.g. CompCert) – built from scratch 

 
 Translation Validation (e.g. LLVM-MD) – used primarily for same 

language transformations 

48 



TV prototype for LLVM ISel (IR to x86-64) 

Sync Point 
Generator 

LLVM ISel 
Hint Gen 

KEQ language-independent 
equivalence checker 

common.k llvm.k Vx86.k 

Virtual X86 
function 

LLVM IR 
function 

compiler hints 

sync points 
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KEQ: K Equivalence Checker 
• Input: a relation over symbolic states – called 

synchronization points 

• Output: a bisimulation proof of program equivalence 
 Leverages our cut-bisimulation theory 

 

• Built on top of K Framework 
 Leverages the K symbolic execution engine 

 

• Language-independent 
 Parametrized with the input and output language semantics 
 Definitions defined in K 
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LLVM Instruction Selection Phase 
• Translates LLVM IR into various target ISAs 
 primary language translation step beyond the front-end 
 140,000 lines of C++ and TableGen code 

 

• IR to Selection DAG for each basic block 
 Amenable to optimal pattern matching selection 

 

• Output: Machine IR 
 Target ISA representation extended with some high-level features 
 Virtual x86: Machine IR for x86-64 
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K Semantic Definitions 

LLVM IR Semantics Virtual x86 Semantics 
Types • varied-width integer types 

• composite array and struct types 
• the corresponding pointer types 

• unsigned integers 
• various flag bits 
• 64-bit addresses 

Features • (un)signed integer arithmetic 
• Casts between ptrs/ints 
• getelementptr 
• (un)conditional branches 
• call/ret 
• alloca/load/store 

• unsigned integer arithmetic 
• (un)conditional jumps 
• eflags register 
• various mov instructions 
• call/ret 

Memory 
abstraction 

map from symbolic addresses to memory objects represented as byte arrays 

57 



Synchronization Point Generator 
• Where? 
Beginning/end of each function 
Before/after each callsite 
Before each loop header 

• These points are a cut for each function 

 

• Constraints over symbolic variables 
Describe what parts of the two states should be “the same” 

58 



Synchronization Point Generator 

Sync Point Type Constraint How to generate 
Entry corresponding args from calling conv 
Exit same return value from calling conv 
Before call corresponding args, same 

callee 
from calling conv 

Loop header corresponding live regs hints + liveness analysis 
After call same return value, 

corresponding live regs 
from calling conv (return value), 
hints + liveness analysis 

59 

 Required Static Analysis 

 Loop detection (natural loops) 

 Liveness analysis 

 Hints 

 Virtual register correspondence 



Example: The Collatz conjecture test 
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Questions? 
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Example: Sgemm 
• A single work item computes TILE_H 

elements of C 

• TILE_M work items cooperate to load 
TILE_H x TILE_N elements of B in 
local memory 

• Figure shows computation performed 
by one work group 
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SGEMM – Dataflow Graph Structure 

Sgemm 
Leaf 

Alloc
ation 

Sgemm 
Internal 

Sgemm 
Root 

… 

… 
Dataflow 
Edges 

Bindings 


	Slide Number 1
	Compilation Model for Static Languages
	Virtual Instruction Set Computing
	Virtual Instruction Set Computing
	Popular Native Code Systems (Not VISC)
	Static Compilation is NOT Enough
	Proposal
	Myth: Virtual ISA Threatens IP
	ALLVM: Ship All Software as Virtual ISAs
	LLVM Virtual Instruction Set and IR
	Why LLVM IR for ALLVM? (1 of 2)
	Why LLVM IR for ALLVM? (2 of 2)
	But Many Unanswered Questions
	ALLVM Toolchain
	ALLVM Status
	ALLVM Research Goals: What are the Benefits?
	ALLVM Research Goals: What are the Benefits?
	ALLVM Research Goals: What are the Benefits?
	Outline: Applications of ALLVM
	Sources of Code Duplication
	Code Duplication Across Software Versions
	Code Duplication Across Programs in a Package
	Example: Code Deduplication with Allmux
	ALLVM Quasi-static Linking
	Memory Usage with Shared Libraries
	What’s the Secret? (1 of 2)
	What’s the Secret? (1 of 2)
	What’s the Secret? (2 of 2)
	Next Steps on Deduplication with ALLMUX
	Outline: Applications of ALLVM
	Configuration-based Slimming
	Specialization transforms
	Experiments
	OpenWRT programs
	Linux Programs
	Slide Number 38
	Binary-to-LLVM
	allready: Binary-to-LLVM
	Current Status
	Stack Deconstruction
	Ongoing Work
	Takeaway Message
	Summary and Implications
	Slide Number 46
	Cross-Language Program Equivalence with Application to LLVM
	Motivation
	TV prototype for LLVM ISel (IR to x86-64)
	KEQ: K Equivalence Checker
	LLVM Instruction Selection Phase
	K Semantic Definitions
	Synchronization Point Generator
	Synchronization Point Generator
	Example: The Collatz conjecture test
	Example: The Collatz conjecture test
	Slide Number 63
	Example: Sgemm
	SGEMM – Dataflow Graph Structure

