
A Case for Shipping ALL Software
 Using Virtual Instruction Sets:

 The ALLVM Project

Vikram Adve and Will Dietz
With: Sean Bartell, Tom Chen, Sandeep Dasgupta,
Theodoros Kasampalis, Maria Kotsifakou and Hashim Sharif

University of Illinois at Urbana-Champaign
Alumni: Chris Lattner, John Criswell, Swarup Sahoo

Supported by: ONR, NSF, SRC, DARPA

Linker +
IP Optimizer

Compiler 1 C, C++

OCAML
Fortran

bin / IR

Compiler N
Ada

Rust

• • •

Developer site
User site

Static
Code Gen

Compilation Model for Static Languages

bin

1955 1965 1975 1985 1995 2005 2015

bin / IR

bin / IR

Developer
site

User
site

Idle-time
Reoptimizer

End-user
profiles

Virtual Instruction Set Computing

Virtual
ISA

Linker +
IP Optimizer

Compiler 1 C, C++

Java, C#

Fortran
IR

IR
Compiler N

Javascript
OpenCL,
CUDA, …

• • •

Static
Code-gen

bin

Runtime
Optimizer

End-user
profiles

Key: Virtual ISA can enable
far richer analyses, transforms
than native ISA

JIT
Code-gen bin

Informal Definition:
VISC == Software ISA differs
 from Target Machine ISA

Developer
site

User
site

Idle-time
Reoptimizer

End-user
profiles

Virtual Instruction Set Computing

Virtual
ISA

Linker +
IP Optimizer

Compiler 1 C, C++

Java, C#

Fortran
IR

IR
Compiler N

Javascript
OpenCL,
CUDA, …

• • •

Static
Code-gen

bin

Runtime
Optimizer

End-user
profiles

JIT
Code-gen bin

Key: Virtual ISA can enable
far richer analyses, transforms
than native ISA

Popular Native Code Systems (Not VISC)

High performance software
is largely shipped as native code

System software is almost
exclusively shipped as native code

HPC applications Operating systems

Media, Gaming, Finance, CAD, … Hypervisors

Web browsers Compilers

Database systems Managed language runtimes

Libraries galore Communication / crypto libraries

Loaders, linkers, GUI frameworks

“VISC” == Ship code as Virtual ISA (e.g,. JVM, PTX)
Native code is pervasive for two broad classes of software

Static Compilation is NOT Enough
Modern software architectures
 Install-time configurations, software environments
User-installed extensions, dynamically loaded libraries, layering

Modern hardware architectures
Diverse vector hardware, GPUs, accelerators in SoCs

Modern security challenges due to untrusted code
Browser extensions, mobile app markets, BYOD

Need rich analyses and transformations on end-
user systems

Proposal
All future software should “ship” using Virtual ISAs.
NOTE: Different systems can use different Virtual ISAs.

• The security benefits are strong

• There are no inherent performance penalties (and novel
performance benefits are possible)

• It is technically feasible and commercially acceptable

Myth: Virtual ISA Threatens IP
Fact: Binary code can be reverse engineered effectively

using interactive tools + manual analysis

• Better Solution #1: Encryption + Code Signing

• Better Solution #2: Obfuscation tools (must not interfere
with program analyses)

OS

ALLVM: Ship All Software as Virtual ISAs
Key: Virtual ISAs enable far richer analyses, transforms than native ISA

OS

Applications

libc

Dynamic
libs

Static
libs

Applications

libc

Dynamic
libs

Static
libs

Device
drivers

Boot loader

Userspace only OS and Userspace

Native ISA
Virtual ISA

 Will Dietz and V. Adve

LLVM Virtual Instruction Set and IR

;; LLVM Code
int %SumArray(int* %A, int %Num)
{
bb1:
 %cond = icmp sgt i32 %Num, 0
 br i1 %cond, label %bb2, label %bb3
bb2:
 %sum0 = phi i32 [%t10, %bb2], [0, %bb1]
 %iv = phi i64 [%inc, %bb2], [0, %bb1]
 %t2 = getelementptr inbounds i32* %A, i64 %t7
 %t3 = load i32* %t2, align 4
 %t4 = add nsw i32 %t3, %sum0
 %inc = add nuw i64 %iv, 1
 %t5 = trunc i64 %iv to i32
 %exitcond = icmp eq i32 %inc, %Num
 br i1 %exitcond, label %bb3, label %bb2
bb3:
 %sum1 = phi i32 [0, %bb1], [%t4, %bb2]
 ret int %sum1
}

/* C Source Code */
int SumArray(int A[], int Num)
{
 int i, sum = 0;
 for (i = 0; i < Num; ++i)
 sum += A[i];
 return sum;
}

• Simple, 3-address IR
• Architecture-neutral
• Language-neutral
• Explicit CFG
• Always in SSA form
• Typed memory, regs

LLVM enables sophisticated program analyses and transformations

Why LLVM IR for ALLVM? (1 of 2)
1. Fully executable virtual ISA

• Language-neutral; hardware-neutral; and a rich IR

• Extensive production-quality infrastructure and tools

• Widely used: Apple, Google, Intel, QCOM, ARM, …

• Numerous front-ends: C, C++, (Fortran), .NET, Swift,
Python, Ruby, Haskell, …

Available at: llvm.org
First release: October 2003

Why LLVM IR for ALLVM? (2 of 2)

Compile-
time

Link-
time

Install-
time

Load/Run-
time

Idle-
time

Apple, Sony,
Intel, QCOM, …

✔ ✔

(Apple) tvOS,
watchOS, iOS

✔ ✔

MacOS OpenGL ✔ ✔
OpenCL SPIR ✔ ? ? ✔
Renderscript ✔ ? ? ✔
(Google) PNaCl ✔ ? ✔

Static
compilers

VISC
systems

SHIP

“For iOS™ apps, bitcode is the default, but optional.
 For watchOS™ and tvOS™ apps, bitcode is required.”
 -- iOS App Distribution Guide, Apple

2. Emerging adoption as a Virtual ISA

But Many Unanswered Questions

Not enough research on benefits of a Virtual ISA
For software in static languages (C, C++, Fortran, OpenMP, ...)

Uses to date are limited, ad hoc, and haphazard

• What are the benefits for performance?

• What are the benefits for security?

• What are the benefits for software reliability?

ALLVM Toolchain
Self-hosting: all tools
ship in .allexe format

Linker +
IP Optimizer

Developer site

bc2allvm

User site

alley
Execution YEngine

.allexe

allready:
Native object
code cache

allout
AOT opt + code gen

bin

bin

alltogether
.allexe

.allexe

Clang C, C++ LLVM

Clang

• • •

C, C++

allbin bin
LLVM

LLVM

LLVM

ALLVM Status
Self-bootstrap: Clang (C++) : bash + cmake → make + clang →
 bc2allvm → alltogether → allout / cache → alley

Substantial userspace software, tools work in ALLVM:
 xterm, libX11, vim, spidermonkey
 openssl, openssh
 (apache) httpd, nginx, redis, memcached, postgresql
 subversion, git
 binutils, coreutils, bash, zsh, tcsh
 lua, perl, python, ocaml (the C-based bits anyway)

Substantial capabilities for userspace:
 Runs on top of existing Linux OS, or in Docker
 Binary cache: Local and remote (trusted)
 Nix package manager: Atomic software upgrades

Adding more packages is “easy” if build system is somewhat sane

ALLVM Research Goals: What are the Benefits?

Security
• Secure Virtual Architecture

(John Criswell; PhD '14)

Runner-up, ACM Doctoral
Dissertation Award

ALLVM Research Goals: What are the Benefits?

Security
• Secure Virtual Architecture

(John Criswell; PhD '14)

Software Reliability
• Automated fault localization

(Swarup Sahoo; PhD '12)

• Distributed system fault
diagnosis (Sean Bartell)

• Verified codegen: Increasing
trust in shipping virtual ISAs
(Theodoros Kasampalis)

ALLVM Research Goals: What are the Benefits?

Security
• Secure Virtual Architecture

(John Criswell; PhD '14)

Software Reliability
• Automated fault localization

(Swarup Sahoo; PhD '12)

• Distributed system fault
diagnosis (Sean Bartell)

• Verified codegen: Increasing
trust in shipping virtual ISAs
(Theodoros Kasampalis)

Performance
• Whole-system optimization;

deduplication (Will Dietz)

• Software specialization and
debloating (Hashim Sharif)

• allready: Binary-to-LLVM
(Sandeep Dasgupta)

• Autotuning: install-time search
(Yishen Chen)

• HPVM: Heterogeneous parallel
systems (Maria Kotsifakou)

Outline: Applications of ALLVM
• Code deduplication with software multiplexing

• Debloating via program customization

• Binary translation to LLVM IR

Sources of Code Duplication
• Duplicated libraries across applications

• Multiple versions of libraries or applications on a system

• Duplicated functions or code fragments within / across
applications

Software multiplexing is a framework

to address all three issues
(current system addresses first two)

Code Duplication Across Software Versions
Multiple versions of a tool or library often co-exist on the same machine

=> extensive duplication

Code Duplication Across Programs in a Package
Multiple tools in a package often share extensive code

Nodes are functions (as hash value)
Edges mark equivalence; colored regions are dense with edges

Example: Code Deduplication with Allmux

Build config Binaries
size

Libraries
size Total size Performance Startup

Static 590M 2.1M 592M Better Fast

Shared
(libllvm) 231M 38M 269M Worse Slow

Shared
(separate libs) 11M 93M 104M Worst Slowest

Allmux 85M 0M 85M Best Fastest

Size and performance of LLVM linux-x86-64 software release

ALLVM Quasi-static Linking

0
200
400
600
800

1000
1200
1400
1600
1800

libllvm musl static allmux

Execution time in seconds
(lower is better) Total time for building

Clang system with
four LLVM versions:
Allmux version faster
than dynamically
linked versions because
lower startup cost

Single
shared
library

Many
shared
libraries

Fully
static
linking

Software
multiplexing

Memory Usage with Shared Libraries
E.g., 1-10 apps that

use Qt toolkit

Allmux uses 2.5x
less RAM vs. static
linking; 35% less
than dynamic

Allmux performance
is much better than
dynamic linking;
comparable to static

2.5X

35%

What’s the Secret? (1 of 2)
1) Software Multiplexing: N pgms + K libs  1 pgm + K libs

Exposes duplicated code between programs, libs

int main(int argc, char* argv[], char* envp[]) {
If (! strcmp(argv[0], “program-name1”) main1(argc, …);
If (! strcmp(argv[0], “program-name2”) main2(argc, …);
If (! strcmp(argv[0], “program-name3”) main3(argc, …);
If (! strcmp(argv[0], “program-name4”) main4(argc, …);
…

}
“Designed in” by a few packages, e.g., GCC
Affects the build system heavily  hard to add manually today

What’s the Secret? (1 of 2)

bc2allvm
.allexe

Clang C, C++ LLVM

• • •

C, C++

zip
append

.allexe

Clang
LLVM

bc2allvm
.allexe .allexe

allmux .allexe

1) Software Multiplexing: N pgms + K libs  1 pgm + K libs
Exposes duplicated code between programs, libs

 N pgms

Key: IR-level compiler pass adds multiplexing

 1 pgm

K+1 allexe’s

What’s the Secret? (2 of 2)

ALLVM
linker

2) Bitcode for all components including dynamic libraries
enables linking before code generation

 static linking without rewriting build system!

LLVM
code-gen

.exe allexe

 Mux’ed pgm
+ K libs

 Linked
pgm

 Linked
pgm

…

Next Steps on Deduplication with ALLMUX
• Identify equivalent functions #1: structural equivalence

• Identify equivalent functions #2: semantic equivalence

• Identify equivalent fragments: perhaps by hashing

Towards a Bitcode Database
The one repository to rule them all!

Outline: Applications of ALLVM
• Code deduplication with software multiplexing

• Debloating via customization to a configuration

• Binary translation to LLVM IR

Configuration-based Slimming

Customize for user-defined program configuration
Generate specialized binaries
Reducing code bloat as a result of specialization

.allexe Speciali-
zation

Import
config

Code-gen
.exe .allexe

 Specialized
pgm

 Linked
pgm

.allexe

 Install-time
config info

Specialization transforms
1. Identify code that parses input configuration

2. Fully unroll only the loop(s) that parse inputs

3. Mark config variables that hold constant values

4. Aggressive interprocedural const. propagation for
marked variables only

5. Aggressive constant evaluation, specialization

Experiments
Goal: Compare against existing state-of-the-art Partial

Evaluation tool (Occam)

Benchmarks:
 7 OpenWRT programs: optimized for embedded systems
 7 Commonly used Linux programs
Yices – SMT Solver

 18.35% Geom. mean code reduction across 14 programs

OpenWRT programs

34

Linux Programs

35

Binary to LLVM Translation

Led by: Sandeep Dasgupta
with Ed Schwartz (CMU)

Binary-to-LLVM

Linker +
IP Optimizer Clang C, C++ .bc

.bc
Clang

• • •

.bc

Developer site

bc2allvm

User site

alley
Execution engine

.allexe

Native object
code cache

allout
AOT opt + code gen

bin

bin

alltogether
.allexe

C, C++
.allexe

allready bin
.bc

allready: Binary-to-LLVM
Preference: Only a few components will be binary

Motivation
Some software components will only be in binary format
Existing tools inadequate: McSema, BAP, SecondWrite, Qemu

Goal
Extract “rich” LLVM IR from binary code
Enable full set of ALLVM optimizations on partial-binary programs
Needs variable info, type info, per-procedure stack frames

Current Status

McSema
Binary LLVM Stack

Recovery
LLVM Variable

Recovery
LLVM Type

Inference
LLVM

IR extracted by McSema is executable but very “low-level”
Models runtime process stack as unified flat array
Machine registers mapped in flat memory, not SSA virtual registers
No information about variables, types, call graph, exceptions, etc.

Added stack deconstruction
Recovers individual stack frames per function
Distinguishes current vs. parent frame pointers
Tested using McSema test suite; custom test cases

Partially done Ongoing Work
IDAPro CFG

Completed External;
extending

Commercial

Stack Deconstruction

arg2

arg1

ret addr

old %rbp

High

Low

Parent Stack

Current Stack
%rbp

%rbp + 16

%rbp + 24

High

Low

Parent Stack

Current Stack
%rbp

%rbp + 8

%rbp + 16

arg2

arg1

ret addr

old %rbp

%parent_stack_end

(Function Foo)
(Function Foo)

foo:
 push %rbp
 mov %rsp, %rbp
 mov 16(%rbp), %rax
 mov 24(%rbp), %r10

foo:
 push %rbp
 mov %rsp, %rbp
 mov 8(%parent_stack_end), %rax
 mov 16(%parent_stack_end), %r10

Ongoing Work

• Identify variables and promote them as symbols

• Represent every symbol in the IR with a meaningful
type instead of the generic types provided by McSema

unsigned int foo(char* buf) {
 unsigned alligned_len = 0;
 unsigned int c = strlen(buf);
 if(c%8 == 0) {
 return c;
 }
 alligned_len = 8* (c/8) + 8;
 return allign_len;
}

Variable Names C Type
1) buf char*
2) c unsigned int
3) alligned_len unsigned int

1) and 2) inferred using strlen prototype
3) inferred using arithmetic operation

Takeaway Message
Proposal

All future software should ship as virtual ISAs

• The security benefits are strong

• There are no inherent performance penalties (and novel
performance benefits are possible)

• It is technically feasible and commercially acceptable

http: // allvm.org

Summary and Implications

Application / product areas

LLVM Compilers; Mobile software; Security

HPVM Mobile and embedded SoCs; Accelerators

DLVM DNN toolkits and systems

ALLVM Late-stage software customization; debloating;
autotuning

Translation Validation for Increasing Trust in
Compilation of Shipped Code

Led by: Theodoros Kasampalis
with Daejun Park and Prof. Grigore Rosu

Cross-Language Program Equivalence
with Application to LLVM

Theodoros Kasampalis, PhD student
Joint work with Daejun Park, Vikram Adve, Grigore Rosu

47

Motivation
• Low trust in code generation process (bugs, undefined

behaviors, etc.)

• Existing solutions are not practical for verified code
generation with production-quality compilers (e.g. LLVM)

 Verified Compilers (e.g. CompCert) – built from scratch

 Translation Validation (e.g. LLVM-MD) – used primarily for same

language transformations

48

TV prototype for LLVM ISel (IR to x86-64)

Sync Point
Generator

LLVM ISel
Hint Gen

KEQ language-independent
equivalence checker

common.k llvm.k Vx86.k

Virtual X86
function

LLVM IR
function

compiler hints

sync points

53

KEQ: K Equivalence Checker
• Input: a relation over symbolic states – called

synchronization points

• Output: a bisimulation proof of program equivalence
 Leverages our cut-bisimulation theory

• Built on top of K Framework
 Leverages the K symbolic execution engine

• Language-independent
 Parametrized with the input and output language semantics
 Definitions defined in K

54

LLVM Instruction Selection Phase
• Translates LLVM IR into various target ISAs
 primary language translation step beyond the front-end
 140,000 lines of C++ and TableGen code

• IR to Selection DAG for each basic block
 Amenable to optimal pattern matching selection

• Output: Machine IR
 Target ISA representation extended with some high-level features
 Virtual x86: Machine IR for x86-64

55

K Semantic Definitions

LLVM IR Semantics Virtual x86 Semantics
Types • varied-width integer types

• composite array and struct types
• the corresponding pointer types

• unsigned integers
• various flag bits
• 64-bit addresses

Features • (un)signed integer arithmetic
• Casts between ptrs/ints
• getelementptr
• (un)conditional branches
• call/ret
• alloca/load/store

• unsigned integer arithmetic
• (un)conditional jumps
• eflags register
• various mov instructions
• call/ret

Memory
abstraction

map from symbolic addresses to memory objects represented as byte arrays

57

Synchronization Point Generator
• Where?
Beginning/end of each function
Before/after each callsite
Before each loop header

• These points are a cut for each function

• Constraints over symbolic variables
Describe what parts of the two states should be “the same”

58

Synchronization Point Generator

Sync Point Type Constraint How to generate
Entry corresponding args from calling conv
Exit same return value from calling conv
Before call corresponding args, same

callee
from calling conv

Loop header corresponding live regs hints + liveness analysis
After call same return value,

corresponding live regs
from calling conv (return value),
hints + liveness analysis

59

 Required Static Analysis

 Loop detection (natural loops)

 Liveness analysis

 Hints

 Virtual register correspondence

Example: The Collatz conjecture test

60

p0

p
2

p
1

p
3

Example: The Collatz conjecture test

61

p0

p
2

p
1

p
3

Questions?

C
TI

LE
_M

TILE_H

Example: Sgemm
• A single work item computes TILE_H

elements of C

• TILE_M work items cooperate to load
TILE_H x TILE_N elements of B in
local memory

• Figure shows computation performed
by one work group

A

TI
LE

_M

TILE_N

…

B

TI
LE

_N

TILE_H

…

SGEMM – Dataflow Graph Structure

Sgemm
Leaf

Alloc
ation

Sgemm
Internal

Sgemm
Root

…

…
Dataflow
Edges

Bindings

	Slide Number 1
	Compilation Model for Static Languages
	Virtual Instruction Set Computing
	Virtual Instruction Set Computing
	Popular Native Code Systems (Not VISC)
	Static Compilation is NOT Enough
	Proposal
	Myth: Virtual ISA Threatens IP
	ALLVM: Ship All Software as Virtual ISAs
	LLVM Virtual Instruction Set and IR
	Why LLVM IR for ALLVM? (1 of 2)
	Why LLVM IR for ALLVM? (2 of 2)
	But Many Unanswered Questions
	ALLVM Toolchain
	ALLVM Status
	ALLVM Research Goals: What are the Benefits?
	ALLVM Research Goals: What are the Benefits?
	ALLVM Research Goals: What are the Benefits?
	Outline: Applications of ALLVM
	Sources of Code Duplication
	Code Duplication Across Software Versions
	Code Duplication Across Programs in a Package
	Example: Code Deduplication with Allmux
	ALLVM Quasi-static Linking
	Memory Usage with Shared Libraries
	What’s the Secret? (1 of 2)
	What’s the Secret? (1 of 2)
	What’s the Secret? (2 of 2)
	Next Steps on Deduplication with ALLMUX
	Outline: Applications of ALLVM
	Configuration-based Slimming
	Specialization transforms
	Experiments
	OpenWRT programs
	Linux Programs
	Slide Number 38
	Binary-to-LLVM
	allready: Binary-to-LLVM
	Current Status
	Stack Deconstruction
	Ongoing Work
	Takeaway Message
	Summary and Implications
	Slide Number 46
	Cross-Language Program Equivalence with Application to LLVM
	Motivation
	TV prototype for LLVM ISel (IR to x86-64)
	KEQ: K Equivalence Checker
	LLVM Instruction Selection Phase
	K Semantic Definitions
	Synchronization Point Generator
	Synchronization Point Generator
	Example: The Collatz conjecture test
	Example: The Collatz conjecture test
	Slide Number 63
	Example: Sgemm
	SGEMM – Dataflow Graph Structure

