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ABSTRACT

The paper describes Vertx, a tool for validating software
binary transformations. Vertx enables software developers
and system administrators to automatically check the cor-
rectness of software binary transformations such as security
hardening and optimization. Transformation validation in-
creases user trust in binary-transformation technology and
allows binary transformations to be safely used in critical
applications that have narrow margins of error.

1 INTRODUCTION

Technology for transforming software binaries provides many
unique advantages to software developers, security engineers,
and system administrators. It allows them to modify legacy
software or commercial of-the-shelf (COTS) components—
for which source code is often unavailable—to incorporate
general security protections, specific vulnerability fixes, and
runtime monitoring of application-specific policies. Addition-
ally, software binaries can be optimized and specialized with
respect to their operational environment to reduce their sizes
and/or improve their efficiency. Even when source code is
available, transforming software at the machine-code level
may be advantageous because it avoids the WYSINWIX
(“What You See [in the source code] Is Not What You eXe-
cute”) phenomenon [3–5].

Automatically modifying software binaries is a highly com-
plicated undertaking. Binary transformations must leverage
many sophisticated analyses and tools to: (1) accurately re-
cover the high-level Intermediate Representation (IR) from
the binary; (2) soundly modify the IR to achieve the transfor-
mation goals; and (3) correctly reassemble the IR back into
an operational binary. A slight error or imprecision in any
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step may cause the modified software to malfunction. Often,
software patches that fix one set of errors simultaneously
introduce new errors and vulnerabilities [13, 14, 16, 20, 21].
As a result, the users are faced with a dilemma: either use
existing bloated and insecure software, or risk further break-
ing the software in an attempt to fix it with an untrusted
binary transformation. In practice, reliability-conscious users
often elect to avoid using binary transformation tools.

In this paper, we present Vertx, a tool that aims to
enable the application of binary transformations in a safe
and verifiable manner. We took inspiration for Vertx from
the translation-validation techniques that were designed to
validate the correctness of optimizing compilers [12, 15, 17].
Rather than attempting to prove the overall correctness of
compiler implementation, translation validation techniques
view the compiler as untrusted, and instead focus on validat-
ing each individual compilation. They compare the original
program to the optimized one to see if there are any semantic
differences. Such differences indicate that the compiler is
buggy. To achieve scalability, translation validation leverages
the fact that the two programs are similar structurally and
rely on the information emitted by the compiler to understand
how the program was transformed.

Vertx operates in a similar fashion. However, there are
several important differences to the translation-validation
setting that Vertx must reckon with:

∙ Vertx targets general software transformations, such
as security hardening, which do not preserve the ex-
act semantics of the original program. Instead, such
transformations augment the semantics of the original
program to exclude unsafe behaviors.

∙ Vertx operates directly on software binaries and must
accurately model low-level details such as code and
data layout. In contrast, existing translation validation
approaches operate on high-level intermediate repre-
sentation maintained by a compiler.

In essence, Vertx constitutes the trusted computing base
(TCB) of a binary-transformation framework. Vertx is small,
makes a minimal number of necessary assumptions about
the software and its execution environment, and is built
around general, well-exercised components. Thus, assessing
the correctness of Vertx is much easier than establishing
the correctness of the entire transformation framework.

We built a prototype of Vertx and used it to successfully
validate several useful security transformations. Currently,
Vertx only supports transformations that (i) do not impose
global changes on program semantics, and (ii) preserve the
layout and placement of data. While limited, this class of
transformations includes, for instance, control flow integrity
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enforcement [1, 2], which has been shown to be useful in
practice.

Contributions. Our work makes the following contribu-
tions:

∙ We reduce the TCB of a general framework for trans-
forming software binaries.

∙ We adapt translation-validation techniques to effec-
tively validate binary transformations that modify the
semantics of the software.

∙ We adapt translation-validation techniques to directly
operate on software binaries.

Paper Organization. The paper is organized as follows. §2
gives an intuitive overview of our approach. §3 describes trans-
formation validation more formally. §4 presents experimental
evaluation of Vertx. §5 discusses related work.

2 OVERVIEW

Fig. 1 shows how Vertx fits into the overall software-binary
transformation ecosystem.Vertx provides a trusted “checker”
to validate any changes made by any untrusted binary trans-
formation tool. It leverages formal verification-style tech-
niques to ensure that:

∙ The transformation achieves its stated goal (e.g., elim-
inates unwanted program behaviors).

∙ The transformation does not break software function-
ality (i.e., preserves its desired behaviors).

Vertx is a stand-alone tool with a well-defined interface.
It takes several inputs:

∙ Two versions of the binary: the original and the trans-
formed;

∙ A trusted transformation specification capturing the
intent of the transformation;

∙ Untrusted transformation hints to enable scalable vali-
dation;

and produces a yes or no answer. The “yes” answer indi-
cates that the transformation is correct with respect to the
specification. The “no” answer indicates that either (i) the
transformation does not adhere to the specification (that is,
the transformation is buggy and needs to be fixed), or (ii)
the transformation is correct, but the hints are insufficiently
strong/precise to enable the validation. It is possible for some
of the validation tasks to timeout, also resulting in the “no”
answer. To help the users determine the causes for the “no”
answer, Vertx generates a detailed validation report.

We expect that, in most cases, the transformation spec-
ification and hints will be generated automatically by the
binary-transformation tool rather than being authored man-
ually by the user. We believe that this places only a small
burden on most transformation tools. It is likely that the
tools already compute the information required for validation
as part of the transformation.

Currently, the hints that Vertx requires from a transfor-
mation tool consist of a map that captures the correspondence
between the code fragments in the original program and their
transformed counterparts. The map is from the effective code
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Figure 1: The software-binary transformation
ecosystem. Untrusted components and artifacts are
shown in gray; trusted ones are shown in green.

addresses in the original program to addresses in the trans-
formed programs. The next section describes the information
Vertx requires in greater detail. In the future, as we add
support for additional classes of general binary transforma-
tions, we expect that Vertx will require more sophisticated
set of hints.

3 TRANSFORMATION VALIDATION

The purpose of transformation validation is to (i) make sure
that the transformation achieves its aims, and (ii) that the cor-
rect semantics of the program is not modified. Our approach
is inspired by translation-validation techniques [15, 17]. We
partition the programs (both original and transformed) into
sets of translation blocks, and for each pair of corresponding
blocks (a block from the original program and its counterpart
from the transformed program), we check that:

∙ The transformed block does not cause the violation of
the enforced property

∙ The behaviors of two blocks are equivalent under the
assumption that the enforced property holds.

A translation block is not a straight-line single-entry, single-
exit sequence of instructions (i.e., not a basic block). Rather,
translation block boundaries are defined by a set of cut-points
on an inter-procedural control flow graph. Thus, translation
blocks are single-entry and multi-exit instruction sequences
that may contain control flow paths that split and rejoin.
However, blocks are not allowed to have cycles (Vertx relies
on symbolic execution to capture block’s semantics and thus
requires blocks to have a bounded number of behaviors). Also,
blocks must stop at system calls (system calls contribute to
observable program behaviors; thus, Vertx must ensure that
they are invoked from equivalent program states).

3.1 Validation Algorithm

In this section, we describe key aspects of our validation
mechanisms. Below, let 𝐸𝑎 denote the set of effective code
addresses, and let 𝜑 denote a set of logical formulas over a
program state (i.e., in our machine-code analysis setting, 𝜑
can reference registers, flags, and memory addresses).
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High-level Overview. Vertx takes the following inputs:

∙ The original and transformed programs, in binary form.
∙ A correspondence map, 𝑀𝑐𝑜𝑟𝑟 : 𝐸𝑎 → 𝐸𝑎, that maps
starting point of each translation block in the original
program to the corresponding block in the transformed
program.

∙ A property Φ : 𝐸𝑎 → 𝜑 that the transformation aims
to enforce. Φ is interpreted as follows: for each 𝑒 ∈ 𝐸𝑎

in the domain of Φ, Φ(𝑒) must hold at program point
𝑒.

∙ An error-handler address, 𝑒ℎ𝑛𝑑𝑙𝑟 ∈ 𝐸𝑎: an address
in the transformed program to which the control is
transferred when the property is violated.

∙ A scratch space, 𝑆𝑡𝑥: a memory area that the introduced
instrumentation uses for its purposes.

For each effective-address binding in 𝑀𝑐𝑜𝑟𝑟, the tool:

(1) Extracts the corresponding translation blocks from
the original and transformed programs and logically
captures their semantics.

(2) Checks that, for the executions of the blocks that com-
ply with Φ, the semantics is equivalent.

(3) Checks that any execution of the transformed block
that violates Φ is redirected to the designated error
handler, 𝑒ℎ𝑛𝑑𝑙𝑟.

The transformation is declared to be valid only if the process
succeeds for all bindings in 𝑀𝑐𝑜𝑟𝑟.

Translation Block Extraction. A translation block is
identified by its starting effective address. To extract and log-
ically capture the behavior of the block, we rely on symbolic
execution. The symbolic state is propagated down each path
reachable from the starting point. The propagation stops
when one of the following conditions is met:

∙ The propagation reaches an effective address 𝑎 ∈ 𝐸𝑎

that is mapped by the correspondence map. That is,
either 𝑎 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑀𝑐𝑜𝑟𝑟) for the original program, or
𝑎 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑀𝑐𝑜𝑟𝑟) for the transformed program.

∙ The propagation reaches a call to an external function
(i.e., a function that resides in a shared library).

∙ The propagation reaches a system call.

The propagation stops at the external (library) function calls
and system calls because those calls are used to interact with
the environment and generate observable program events.
The translation validation must ensure that those calls are
performed in the states that are similar in both programs and
the semantic state equivalence is only established at block
boundaries.

The symbolic states that are propagated along each ex-
plored path are tuples, ⟨𝐶, 𝑆⟩, where 𝐶 is the path constraint
and 𝑆 is the transformation map that keeps symbolic values
for processor registers, flags, and memory. The resulting logi-
cal characterization for the code block is a set of such tuples
with one tuple for each execution path in the block. To keep
the block exploration bounded, the blocks are not allowed to
contain loops. If a loop is encountered, the validation of the
block and, consequently, of the entire program fails.

If the propagation encounters an indirect branch, a decision
procedure is used to enumerate the possible control flow
targets. The enumeration is performed up to a user-specified
limit. If the limit is exceeded, a warning is issued to the user.
In that case, it is up to the user to decide whether to trust the
validation results. A failed target enumeration may indicate
that the control can be transferred to a code fragment that
is not covered by the correspondence map, and thus is not
exposed to the validation tool. Those fragments can harbor
semantic differences that went unnoticed. However, if the
user is confident that the correspondence map is complete
(achieves full code coverage), she may still trust the validation
results.

Logical Encoding of Property Φ. Vertx only compares
the blocks for semantics equivalence for the executions that
satisfy the property Φ. To logically characterize those ex-
ecutions, Vertx translates global property Φ to a set of
translation-block specific properties Φ𝐵 , one for each transla-
tion block 𝐵 in a program. Essentially, instead of tracking the
effective addresses of the program points where the property
is specified, Φ𝐵 captures the path constraints that reach those
program points during the execution of 𝐵. The translation
is done as part of symbolic execution: whenever a program
point 𝑒 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(Φ) is reached with symbolic state ⟨𝑐, 𝑆⟩, a
mapping [𝑐→ Φ(𝑒)] is added to Φ𝐵 .

Fig. 2 (d) shows the pseudo-code for encoding Φ𝐵 . The
dp ctx is a decision procedure context, and 𝑆𝑆 is the set of
symbolic states computed for the block 𝐵. The notation 𝜑 [𝑆]
in encode formula denotes evaluation of 𝜑 over a symbolic
value map 𝑆 (that is, the leaf terms in 𝜑 that correspond
to registers, flags, and memory are replaced with the corre-
sponding symbolic values from 𝑆).

Comparing Block Semantics. Vertx checks the equal-
ity of each register, flag, and memory separately. For the
blocks to be equivalent, each individual comparison must
succeed. Fig. 2 (f) shows the pseudo code for checking the
equivalence for an arbitrary processor register or flag, 𝑥. The
check starts by asserting that the property holds (to ensure
that only the correct executions are taken into considera-
tion). Then the symbolic values for the register (flag) in
the original and transformed programs are encoded with
the use of encode reg flag primitive (Fig. 2 (a)). Finally, a
decision-procedure query is issued that checks whether the
two symbolic values can differ. If the query is unsatisfiable,
then the two values are guaranteed to be the same.

The memory equivalence check shown in Fig. 2 (g) is
similar, except that instead of comparing the memory in its
entirety (a memory is represented as a logical array), we
non-deterministically select a memory address and check the
equivalence of the values stored at that address. In essence,
we ask a decision procedure to find an address where the
memory contents may differ. If no such address exists, the
memory contents ought to be equivalent. The introduced
instrumentation may need to compute and store intermediate
data (e.g., spill register values). Vertx accounts for this by
allowing the transformation to specify a scratch space, 𝑀𝑡𝑥,
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Expr encode reg flag(dp ctx, 𝑥, 𝑆𝑆 = {⟨𝑐, 𝑆⟩}) {
Expr 𝑣𝑥 = dp ctx.fresh var()

foreach ⟨𝑐, 𝑆⟩ ∈ 𝑆𝑆 {
dp ctx.assert(𝑐⇒ (𝑣𝑥 = 𝑆(𝑋)))

}
return 𝑣𝑥

}
(a)

Formula encode formula(𝜑, 𝑆𝑆 = {⟨𝑐, 𝑆⟩}) {
return

⋀︀
⟨𝑐,𝑆⟩∈𝑆𝑆(𝑐⇒ 𝜑 [𝑆]))

}
(c)

void encode property(dp ctx, Φ𝐵, 𝑆𝑆 = {⟨𝑐, 𝑆⟩}) {
foreach 𝑐 ↦→ 𝜑 ∈ Φ𝐵 {

Formula 𝑓𝜑 = encode formula(𝜑, 𝑆𝑆)
dp ctx.assert(𝑐⇒ 𝑓𝜑)

}
}

(d)

bool compare reg flag(𝑥, 𝑆𝑆𝑜𝑟𝑖𝑔, 𝑆𝑆𝑡𝑥, Φ𝐵) {
DP dp ctx = fresh context()

encode property(dp ctx, Φ𝐵, 𝑆𝑆𝑜𝑟𝑖𝑔)

Expr 𝑥𝑜𝑟𝑖𝑔 = encode reg flag(dp ctx, 𝑥, 𝑆𝑆𝑜𝑟𝑖𝑔)

Expr 𝑥𝑡𝑥 = encode reg flag(dp ctx, 𝑥, 𝑆𝑆𝑡𝑥)

return (dp ctx.check(𝑥𝑜𝑟𝑖𝑔 ̸= 𝑥𝑡𝑥) == unsat)

}
(f)

Expr encode mem access(dp ctx, 𝑎, 𝑆𝑆 = {⟨𝑐, 𝑆⟩}) {
Expr 𝑣𝑎 = dp ctx.fresh var()

foreach ⟨𝑐, 𝑆⟩ ∈ 𝑆𝑆 {
dp ctx.assert(𝑐⇒ (𝑣𝑎 = 𝑟𝑒𝑎𝑑(𝑆(𝑀𝑒𝑚), 𝑎)))

}
return 𝑣𝑎

}
(b)

bool check property(Φ𝐵, 𝑆𝑆𝑡𝑥) {
DP dp ctx = fresh contex()

Expr 𝑣𝑖𝑝 = encode reg flag(dp ctx, 𝑅𝑖𝑝, 𝑆𝑆𝑡𝑥)

Formula 𝑓 =⋁︀
𝑐↦→𝜑∈Φ𝐵

(𝑐 ∧ ¬𝜓 ∧ (𝑣𝑖𝑝 ̸= 𝑒ℎ𝑛𝑑𝑙𝑟))

where 𝜓 = encode formula(𝜑, 𝑆𝑆𝑡𝑥)

return (dp ctx.check(𝑓) == unsat)

}
(e)

bool compare memory(𝑆𝑆𝑜𝑟𝑖𝑔, 𝑆𝑆𝑡𝑥, Φ𝐵, 𝑀𝑡𝑥) {
DP dp ctx = fresh context()

encode property(dp ctx, Φ𝐵, 𝑆𝑆𝑜𝑟𝑖𝑔)

Expr 𝑎 = dp ctx.fresh var()

dp ctx.assert(𝑎 ̸∈𝑀𝑡𝑥)

Expr 𝑣𝑜𝑟𝑖𝑔 = encode mem access(dp ctx, 𝑎, 𝑆𝑆𝑜𝑟𝑖𝑔)

Expr 𝑣𝑡𝑥 = encode mem access(dp ctx, 𝑎, 𝑆𝑆𝑡𝑥)

return (dp ctx.check(𝑣𝑜𝑟𝑖𝑔 ̸= 𝑣𝑡𝑥) == unsat)

}
(g)

Figure 2: Pseudo-code for validating the transformation of a single translation block. Notation: 𝑆𝑆𝑜𝑟𝑖𝑔 and 𝑆𝑆𝑡𝑥

denote sets of symbolic states obtained for the original and transformed programs, respectively; 𝑅𝑖𝑝 denotes
the instruction-pointer register for the target architecture (e.g., %eip on x86); 𝜑 [𝑆] denotes an evaluation of
formula 𝜑 over the map of symbolic values 𝑆.

a set of data locations that are only used by the transformed
program. The pseudo-code in Fig. 2 (g) explicitly excludes
addresses in 𝑀𝑡𝑥 from comparison.

Checking Φ for the Transformed Block. The last check
that Vertx performs is ensuring that the transformed block
does not violate the property Φ. Fig. 2 (e) shows the pseudo-
code for the check. The constructed formula contains a dis-
junct for each potential property violation in the block. Each
disjunct is a conjunction of:

∙ A precondition for reaching a program point where the
property is checked,

∙ A condition for property violation (the negation of
property encoding),

∙ A check that control did not reach the designated error
handler.

For a given disjunct to be true, the following conditions
must be met: (i) the precondition for reaching the sensitive
program point must be satisfied, (ii) the property at that
program point must be violated, and (iii) the control must
not be redirected to the error handler. If the overall formula

is unsatisfiable, then every property violation in the block
results in the control to be routed to the error handler.

3.2 Validation Challenges

In this section, we describe challenges that we encountered
when building Vertx.

Code Coverage. To establish transformation correctness,
Vertx must ensure that all of the code in both programs is
properly compared. To ensure that, Vertx performs several
additional checks:

∙ The entry points of both programs must be mapped
by 𝑀𝑐𝑜𝑟𝑟.

∙ The return points of all external function calls and
system calls must be mapped by 𝑀𝑐𝑜𝑟𝑟.

∙ The targets of all indirect and computed control flow
transfers must be mapped by 𝑀𝑐𝑜𝑟𝑟

The first check is done before the individual block comparison
begins. The second and third checks are done during during
block extraction with the help of a decision procedure.

As we mentioned in §3.1, sometimes Vertx will not be
able to fully enumerate the targets of an indirect control
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flow transfer, and thus ensure that a complete code cover-
age is attained. To make a transformation fully verifiable,
it is advantageous to include an enforcement of control flow
integrity (CFI) [1, 2] as a part of it. CFI ensures that all con-
trol transfers in a program target legal destination addresses.
Typically, a CFI policy white-lists a set of legal destination
addresses for each indirect control transfer in a program.
When CFI policy is available, Vertx ensures that all legal
target addresses in the policy are mapped by 𝑀𝑐𝑜𝑟𝑟.

There is one scenario for which code coverage cannot be
checked mechanically: the call-back addresses that are passed
to external functions and system calls must also be contained
in 𝑀𝑐𝑜𝑟𝑟. However, it is not trivial to identify such callback
addresses without knowing the semantics of the called func-
tions. Currently, we handle this issue by providing models
for some standard functions of interest. However, having a
more general approach is desirable.

Changes in Code Layout. Most useful program transfor-
mations will affect the layout of the code in software. The
change in code addresses causes the following problem: the
registers and memory locations that hold the addresses can-
not be compared directly anymore. For example, consider an
instruction call <foo> that is located at different effective
addresses in the original and transformed programs (let’s as-
sume that the address of foo is the same for both programs).
The original code and the transformed code are syntactically
and semantically equivalent, yet the program states will differ
because the return address pushed onto the stack will be
different in the two programs.

We address this issue by modeling the code addresses sym-
bolically. Scalar code addresses that are mapped by𝑀𝑐𝑜𝑟𝑟 are
replaced in the logical encoding with unconstrained symbolic
constants. Let 𝛼 ↦→ 𝛽 ∈𝑀𝑐𝑜𝑟𝑟. Our approach will substitute
all appearances of 𝛼 in the symbolic encoding of the original
program with unconstrained symbol 𝑠𝑦𝑚𝛼. Similarly, occur-
rences of 𝛽 will be replaced with 𝑠𝑦𝑚𝛽 in the encoding of the
transformed program. Before performing decision procedure
queries, additional constraints that restrict possible values
of the introduced symbols are added to the logical context.
Depending on the context of the query, either constraint
𝑠𝑦𝑚𝛼 = 𝑠𝑦𝑚𝛽 or 𝑠𝑦𝑚𝛼 = 𝛼 ∧ 𝑠𝑦𝑚𝛽 = 𝛽 are added. The
former allows Vertx to properly compare code addresses
that changed as the result of the transformation, while the
latter covers the cases in which the actual values of code
address are important (e.g., the sieve transform described
in §4, which explicitly translates original code addresses to
their transformed counterparts).

Currently, Vertx only handles transformations that pre-
serve data placement and layout; thus, we did not yet address
the corresponding set of issues for the data layout. Supporting
transformations that perturb data layout will be the focus of
the future work.

Error-Handler Integrity. Vertx may successfully prove
that any violation of a targeted security property is prop-
erly routed to a designated error handler. However, Vertx

does not check that the error handler, introduced by an un-
trusted rewriting tool, does not itself contain vulnerabilities
or malicious code. The simplest approach to rectify this is
to force the transformation tool to use a general, program
independent error handler that can be compared verbatim to
its original version. Such an error handler can be analyzed
and verified independently to prove the absence of security
vulnerabilities.

Sanity Constraints. Early in our experiments, we ran into
a need to model certain sanity constraints about the global
program-execution environment. Specifically, we needed to
separate stack and data spaces. Without such separation, a
decision procedure is able to pick addresses that overlap the
stack with the data segment. As the result, any write to a
global variable could be interpreted as the write into the stack
frame (e.g., a stack-smashing attempt) causing the validation
to fail. We addressed this issue by adding constraints on the
values of the stack pointer and frame pointer that clearly
separate the stack from the data (we picked a reasonable
low bound for the stack addresses and added the constraints
that ensured that the initial values of the stack and frame
pointers for each code block are above that bound). However,
this approach is overly simplistic. To provide true validity
guarantees, Vertx must also ensure that such constraints
can never be violated.

4 EXPERIMENTAL RESULTS

We built a prototype of Vertx and evaluated it on a number
of real-world programs. We used the prototype to validate
the sieve transformation, a transformation that modifies
software to dynamically translate control-flow targets (code
addresses) from the original binary to their counterparts in
the transformed binary. Below, we describe our experimental
setup and the results we obtained in detail.

Sieve Transformation. We used the Vertx prototype to
validate the sieve transformation. Sieve is a mechanism that
is used to effectively translate code addresses in the original
software to their counterparts in the transformed software [11,
18]. Each indirect control-flow transfer instruction in the
original software is prefixed with code that performs a look
up in the table of allowable targets. If the target is in the
table, the corresponding code address in the transformed
executable is used as the target for the control transfer;
otherwise, an exception is raised. The sieve transformation
has two important practical uses. First, it enforces control-
flow integrity [2], thus, preventing control hijacking attacks,
such as stack smashing and return-oriented programming [7].
Second, the underlying mechanism simplifies the translation
of the code-address computations, making the transforms
that leverage it more robust.

We used a control-flow integrity (CFI) policy as the target
property for the transformation. Essentially, a CFI policy
specifies a set of legal targets for each indirect control-flow
transfer in a program. We used our existing infrastructure
for machine-code analysis to derive suitable CFI policies for
our benchmarks.
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Figure 3: The effect of program size on validation
efficiency.

Benchmarks. To evaluate Vertx, we selected a subset of
challenge binaries used by DARPA in Cyber Grand Challenge
(CGC) competition [19]. The CGC challenge-binary suite
contains 183 programs of various size. The programs are
32-bit x86 statically-linked binaries that rely on CGC run-
time support (CGC provides its own execution environment
complete with a simplified operating system and a version of
standard C library). Currently, the Vertx prototype does
not support floating point and XMM instructions. Thus, we
selected a subset of binaries (59 out of 183) that do not use
those instructions. The selected binaries range in size from
about 80K to 1.2M.

Setup. We ran the experiments in a virtual environment.
The host machine was equipped with 6-core Intel Xeon CPU
ES-2620 and 16G of RAM and run Windows 7. The guest
environment was configured to use 2 processor cores and 8G
of memory, and ran Ubuntu 14.04.5 LTS.

Results. Vertx was able to successfully validate the ap-
plication of sieve transformation to the set of benchmarks
we selected. In fact, Vertx helped us catch an error in the
transformation implementation. The sieve transformation
introduces a couple of global memory locations for storing
intermediate computation results. The sizes of these loca-
tions were not updated when porting the sieve transformation
from 32-bit to 64-bit. As the result, the values stored at those
locations overlapped causing the software to crash. Vertx
successfully detected and reported this issue.

We found the performance of the Vertx prototype to be
adequate in practice. As we discussed in §3, the validation
of each translation block is performed independently. Thus,
the overall validation time is a linear factor of the time it
takes (on average) to validate a single block transformation.
Fig. 3 shows the relationship between software size (given
in the number of translation blocks) and the average block
validation time. On average, it takes just a few seconds per
block, though block validation time increases with the in-
crease in program size. We believe that this increase is specific
to the sieve transformation: the larger the program, the more
targets each sieve contains. Since the entire sieve code falls

within a translation block, larger sieves translate into longer
block validation times. The two largest benchmarks appear
to be “outliers” with unexpectedly low block validation times
Unfortunately, we did not have a chance to track the exact
reason for this deviation.

Overall, it took the prototype a few minutes to validate
smaller-size CGC challenge binaries (up to 200K). However,
as the software size increased so did the validation times,
rising up to several hours for validating several of the largest
CGC challenge binaries we experimented with (500K to 1M).
Even if block validation takes just a second, processing 14K
blocks adds up to almost 4 hours.

To see how Vertx handles large real-world software, we
experimented with applying it to Apache web server (22K
translation blocks). Our observations agreed with what we
saw in the CGC challenge-binaries experiments—the average
block validation time was further increased due to the increase
in the program size. In the future work, we plan to focus on
cutting down block validation times to make the tool more
scalable.

5 RELATED WORK

The problem of transformation validation was first addressed
in the context of compiler correctness. There are two general
approaches to this problem: (i) verifying the correctness of the
transformation (compiler) implementation, and (ii) checking
the validity of each individual transformation (compilation).
An example of the former approach is CompCert project [12].
An example of the latter approach is translation validation [10,
15, 17].

Vertx is modeled after the latter approach because we
believe it is more practical: (i) it offers better scalability
by reasoning at the level of individual translation blocks,
(ii) it does not impose restrictions on the development of
transformation tools (such as, using Coq [6]), and (iii) it
allows transformation tools to contain latent errors as long
as those errors do not compromise the correctness of specific
transformations. In this work, we extended the translation-
validation approach to apply to transformations that augment
software semantics, and designed mechanisms for applying
it to software binaries directly (as opposed to higher-level
program representations).

Recently, the area of Incremental Verification (IV) has
gained popularity [8, 9]. IV aims to reuse efforts between
verification runs. It assumes that the original program, 𝑃 ,
has been verified with respect to a certain property 𝜑, and
attempts to efficiently prove that 𝜑 also holds for program 𝑄,
which is derived from 𝑃 . To accomplish this, IV techniques
build an abstract simulation relation between 𝑃 and 𝑄 that
can be used to lift the proof of 𝜑 in 𝑃 to also work for 𝑄.
This approach does not directly match the problem we are
addressing, but it bears a strong similarity to the Vertx
concept of operation. It remains to be seen whether it is
possible to adapt some aspects of IV techniques to work
effectively in our context.
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