
RL-Bin, Robust Low-overhead Binary Rewriter
Amir Majlesi-Kupaei
University of Maryland

majlesi@umd.edu

Danny Kim
University of Maryland

dannykim@terpmail.umd.edu

Kapil Anand
SecondWrite LLC

kapil.anand@secondwrite.com

Khaled ElWazeer
SecondWrite LLC

wazeer@secondwrite.com

Rajeev Barua
University of Maryland

barua@umd.edu

ABSTRACT
Binary rewriters are used to ensure security properties or optimize
and reduce runtime of existing binary applications. Existing bi-
nary rewriters are either static or dynamic, and both have severe
shortcomings. Existing static rewriters have low overhead, but can-
not rewrite correctly for all binaries. Existing dynamic rewriters
are robust, but have high overhead – for example, for a subset of
SPEC’06 benchmarks we measured, their overhead is 1.59X for PIN
and 1.32X for DynamoRIO. Because of this high overhead, they are
limited to off line testing, and cannot be used in deployment.

We have built the first binary rewriter called RL-Bin which can
rewrite all binaries correctly, but has low overhead (averaging 1.09X
for our programs.) This makes it practical for continuous use in
deployed software for the first time. This paper represents an early
snapshot of on-going research, and we hope to bring this overhead
down even further in the future. We have also shown how RL-Bin
can be used to enforce CFI, a security mechanism.

CCS CONCEPTS
• Security and privacy → Software security engineering;

KEYWORDS
Binary Rewriting, Control Flow Integrity, Enforce Security Proper-
ties
ACM Reference Format:
Amir Majlesi-Kupaei, Danny Kim, Kapil Anand, Khaled ElWazeer, and Ra-
jeev Barua. 2017. RL-Bin, Robust Low-overhead Binary Rewriter. In Pro-
ceedings of FEAST’17 . ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3141235.3141245

1 INTRODUCTION
Ensuring security properties in programs may take two approaches.
First, we would like to ensure that the application’s vulnerabili-
ties against malicious attack are minimized or eliminated. Second,
in some cases we may also want to enforce security-related con-
straints on any running code, to prevent it from doing unauthorized

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FEAST’17, November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5395-3/17/11. . . $15.00
https://doi.org/10.1145/3141235.3141245

actions, either because the developer made a mistake or is not fully
trusted, or control was hijacked, and attacker code is running. These
two approaches – reducing vulnerabilities and enforcing security
constraints – are not mutually exclusive. Both may be adopted to
improve security.

In both scenarios above, it is highly desirable for the computer
system’s user to ensure security at the level of binary code, instead
of source code. Reasons include (i) the user of the code may not
have access to the source code; or (ii) even when source code is
available, it may come from a variety of sources, including legacy
code and 3rd party code, not all of which may have followed good
security practices, and moreover, the complete compiled binaries
may not be hardened with security properties.

Although research efforts in binary rewriting have been con-
ducted for more than a decade, a guaranteed-correct, low-overhead
binary rewriter still does not exist. Much progress has been made,
however. Static binary rewriting approaches have shown howmany
high-level artifacts can be recovered from binaries, but the ap-
proaches are not robust, in that they do not work for all binary
programs. Dynamic binary rewriting approaches have shown how
robustness can be achieved, but pay a high price in run-time over-
head, making them largely impractical for real-world deployment
use.

In this paper, wewill show howwe can design a dynamic rewriter
that inherits the robustness of dynamic approaches, but selectively
uses just-in-time code analysis (similar to static analysis, but at
run-time) to reduce the overhead to very low levels. To appreciate
how it works, next we overview previous approaches for static and
dynamic binary rewriting.

1.1 Limitations of static binary rewriters
Static rewriting refers to approaches which take an executable
binary program as input, and without running it, produce another
(rewritten) binary program as output that has the same functionality
as the input program, but is enhanced in some way, for example in
improving its run-time, memory use, or security.

Current Static rewriting approaches include [3, 8, 9, 11, 16, 19].
SecondWrite [3], aims to recover compilable source code from
binaries, initially output as LLVM IR, which could then further be
compiled into rewritten executable code. The Ida pro disassembler
[9] generates C-like pseudo-code to aid human understanding of
the binary code. The pseudo-code is not meant to be executed, and
often would not work if it is attempted to be compiled. ATOM
[8] provides a flexible interface for code instrumentation which
helps in the development of program analysis tools. Diablo [19]
aims to provide a framework for link-time program transformation

Session 1: Binary Rewriting and Transformation FEAST'17, November 3, 2017, Dallas, TX, USA

17

https://doi.org/10.1145/3141235.3141245
https://doi.org/10.1145/3141235.3141245
https://doi.org/10.1145/3141235.3141245

with whole program optimization and instrumentation. Pebil [11]
is another static binary rewriter focused on achieving efficient, low-
overhead binary instrumentation. They have built very efficient
instrumentation tools by using function level code relocation for
inserting control structures.

Static rewriters, including all of the above, face significant lim-
itations due to the lack of runtime information when trying to
disassemble and instrument the binary. The first limitation is that
they cannot disassemble dynamically generated or self-modifying
code. The reason is that these codes are not available before execu-
tion of the program. Hence, these codes will not be observed and
instrumented, leading to incomplete code coverage. An attacker
can use just the vulnerability inside the dynamically generated
code to take control of the whole program. If that is the case, all
the instrumentations in other parts of the program would not help.
Another problem is that even for the code that is statically visible,
its context may include dynamically generated code, leading to
incomplete characterization of its behavior.

Dynamically generated code is quite common in benign applica-
tions. In a study recently done in our research group, we observed
that 29 out of 120 benign applications contain some dynamically
generated code, which is usually used for supporting execution
of user scripts. The 120 benign programs included well-known
commercial third-party binaries commonly used by many users of
computer systems. This means that all the implementations which
use static binary rewriters would fail to guarantee the security of
the system for 24 percent of applications.

The second limitation of static binary rewriting arises from the
fact that some benign programs contain data in their code segment.
Static disassemblers aim to understand the contents of code seg-
ments using two types of disassembly – linear sweep or recursive
traversal. Linear sweep ensures high code coverage, but cannot
distinguish between code and data, especially if the data is a valid
sequence of instructions, which is usually the case for x86 instruc-
tion set architecture. Hence it is not safe to use for a binary rewriter,
since linear sweep can mistake data to be code and rewriting it will
break the program.

To overcome the problem of data in code segments, another
method of disassembly must be used. This method is recursive
traversal, which only treats a region of the code segment as code
if it can statically prove a control-flow path to it exists from the
beginning of the program. Unfortunately statically control flow
paths are only known through direct control transfer instructions
(CTI) (i.e. those CTIs whose targets are constants.) For indirect
CTIs whose targets are computed at run-time, the targets are not
statically known. The result is that a lot of the code in the program
that is only reachable via indirect calls cannot be proven to be code.
This results in incomplete code coverage in static binary rewriting,
leading to incomplete implementation of security properties.

A third limitation of static binary rewriting is that some benign
programs contain obfuscated code, in which case static rewrit-
ing can break the program. The relevant kind of obfuscation is
control-flow obfuscation whose goal is to mislead disassemblers,
so that hackers cannot reverse engineer binaries to understand
them or steal their IP. One example of obfuscation is unconditional
branches which are converted to conditional branches where one

path is never taken and leads to data, but can confuse the disas-
sembler into thinking it is code, rewriting which can break the
program. Another example of obfuscation is where a programmer-
registered exception handler can redirect control flow to a point in
the program other than where the exception was triggered, leading
to control-flow paths that cannot be statically discerned. When
even a single instance of obfuscation (or code that appears to be
obfuscation) is present, the static binary rewriter will likely break
the program. In our experiments, we have found that about 1% of
benign programs have obfuscation. The serious consequence is that
these programs will not run correctly any longer after rewriting,
which is unacceptable.

1.2 Limitations of existing Dynamic Binary
rewriters

Unlike static rewriters, dynamic rewriters are robust and can cor-
rectly rewrite all programs. However existing dynamic rewriters
have high overheads that are generally unacceptable for deploy-
ment on live systems. Two of the most popular dynamic rewriters
are DynamoRio [5] and Pin [12] with 1.2x and 1.54x run-time over-
head, respectively, on average for the full SPEC’06 benchmark suite
even without any instrumentation inserted. Our interaction with in-
dustry personnel has revealed that Run-time overhead above a few
percent is unacceptable in deployment. Dynamic binary rewriters
copy all code that executes into another memory region called a
code cache, in which the code can be instrumented and then exe-
cuted from. The code cache is useful because it ensures robustness
– if a piece of data is mistakenly assumed to be code and rewritten,
the program still works, because the original copy of the code seg-
ment with data in it is still unchanged – only the code cache was
changed.

The overhead of dynamic rewriters are caused by three factors.
First, copying code into the code cache is expensive at run-time.
Second, and more seriously, the target addresses of indirect CTIs
must be translated at run-time, because the locations of code have
changed to be in the code cache instead. Such indirect jumps or
calls are actually very common, mostly in the form of return in-
structions, which return control to caller functions from callees,
as well as function pointer calls, and calls to virtual functions in
object-oriented languages such as C++. This translation process
is inevitable for dynamic binary rewriters, since the original desti-
nation address in the program is different from the address of the
rewritten code inside the code cache. A third cause of the overhead
of dynamic rewriters is the increased pressure on the instruction
cache, because each code portion is copied to a code cache, and in
a few cases, both copies may be cached.

2 RL-BIN: PROPOSED BINARY REWRITING
APPROACH

We propose a new approach to binary rewriting that overcomes the
limitations of both static binary rewriting, in they are not robust;
and the limitations of existing dynamic binary rewriters, in that they
incur high overhead. Our proposed binary rewriting tool is called
RL-Bin, (Robust, Low overhead Binary Rewriting). Unlike static
rewriters, it is robust, and works for all binary programs. Instead,
it is a dynamic binary rewriter, that unlike existing dynamic binary

Session 1: Binary Rewriting and Transformation FEAST'17, November 3, 2017, Dallas, TX, USA

18

rewriters, incurs low run-time overhead, and hence is practical for
use in deployment.

We build on prior work on the most advanced static binary
rewriter [17] [3] in existence today. From that work we can learn
about the shortcomings of existing static rewriters, but we can
also gain a lot of insights. This research borrows ideas from static
rewriting, but employs them in a dynamic binary rewriter instead,
inside of just-in-time code translation modules that can reason
about the code, and reduce its overhead.

In this paper, we will show how RL-Bin works by designing,
implementing, and evaluating the scheme. In the future, we will
extend the early prototype we have right now, which encodes a
basic not fully optimized design. RL-Bin rewriter works as follows.
Its main approach is to avoid a code cache, and instead rewrite
the binary in-place in its run-time memory image. Avoiding the
code cache eliminates most of the factors leading to run-time over-
head mentioned earlier, leading to a much faster binary rewriter.
However, for correctness, rewriting in-place requires us to ensure
two properties exist in our scheme. First, we are going to discover
code from all the memory addresses that contain instructions that
will be executed at some time during the execution of the program.
Second, we need to ensure that we instrument a memory location
only if we can ensure that location contains code and not data. To
this end, we don’t assume any location contains code unless some
instruction is executed from that address.

2.1 Methodology
The first intuition behind RL-Bin is to add instrumentation at run-
time that monitors discovery of new code. To generate the correct
and safe rewriting, our method assume that a block of memory is
code, only if we discover an actual control transfer during runtime.
Therefore, we solve this problem by the insertion of instrumenta-
tion into the program at strategic locations where control flow may
be transferred to more than one destination. Thereafter, if for any
of these instrumentations, all possible successor code had already
been discovered, the instrumentation can be removed, resulting in
a low overhead scheme.

More specifically, here is how RL-Bin works. Whenever an ap-
plication begins its execution, our binary rewriter intercepts it and
take control of the program. It starts recursive traversal from entry
point of the program, and stops at any CTI with more than one
possible outcome. These include conditional direct branches and
indirect CTIs, but not unconditional jumps. For those uncertain
successor CTIs, we insert instrumentation just before the CTI to
check whether the actual execution target is registered previously
as code. If it has not, then that new code will be registered.

Using this approach, more and more code is discovered during
runtime. This method would ensure that not a single instruction
can be executed without first being observed by our binary rewriter,
even if the instruction has been generated dynamically or through
self-modification. Also, in case there is obfuscation, we would never
instrument data inside the code segment, since we instrument only
the locations that contain code that has been executed during run-
time.

If at any point, both outcomes of a conditional branch are reg-
istered as code, then the instrumentation at that branch can be

removed. In this way, in the steady state, most or all of the checks
before direct conditional branches are removed and only the check
before indirect CTIs are remained. Since the number of indirect CTIs
is low compared to the number of CTIs with uncertain successors,
the overhead is significantly reduced.

The overhead of the above scheme can be further reduced by
removing checks, at the most common instances of indirect CTIs,
which are return instructions. Intuitively, a check before a return in-
struction can be removed if we can prove that the return instruction
always transfers control back to the instruction after the original
call instruction which is the case for most functions. To remove
the check for a certain function, we need to prove that the function
is “safe” in that it cannot modify its own return address. We have
designed certain just-in-time analysis algorithms, based on static
analysis concepts, by which the safety of vast majority of functions
can be established before their execution. For such safe functions,
the instrumentation before the return instruction can be removed
because it is not needed.

Our scheme avoids the high overhead of code cache-based dy-
namic binary rewriters. The first source of overhead was copying
the code to the code cache which is obviously not present in our
method. The second and the most significant source of overhead, is
dynamic address translation of indirect CTIs. This address trans-
lation is inevitable in the code cache-based rewriters, since the
actual address of destination resides in the program original mem-
ory space and it must be be translated to the corresponding address
in the code cache. However, in our scheme, because code is not
moved, we do not actually have to translate this address. The only
check needed in our scheme, is to ensure that the destination of
the indirect CTI is valid. In many cases, if we can ensure that the
indirect CTI is actually going to transfer to a known valid desti-
nation just-in-time before the block’s execution at run-time, then
we will be able to avoid instrumenting that indirect CTI at all, and
that would lead to significant reductions of overhead. The third
source of overhead (instruction cache pressure) would also be lower
because unlike a code cache, in-place rewriting does not keep two
copies of code.

We will also build additional algorithms for safe handling of user
registered exceptions, to ensure control flow is always visible to
the face of our binary rewriter.

Once correct and low-overhead binary rewriting is ensured using
the approach, in this ongoing work we will use RL-Bin to analyze
the code, and then insert code instrumentation into the application,
where the instrumentation ensures the security policies in question.

3 IMPLEMENTATION AND RESULTS
We have completed and tested an early prototype of the above
method. Most of the code is written in C++ programming language,
while there are some functions which are written in x86 assembly,
for the sake of optimization. Our Target architecture is x86 and
we decided to choose windows operating system, since most of
security exploits target windows binaries.

For our experimental setup, we used a subset of SPECint’06
benchmark and used its reference data set. In comparison with
SPECfp’06 applications, reducing overhead of integer benchmarks

Session 1: Binary Rewriting and Transformation FEAST'17, November 3, 2017, Dallas, TX, USA

19

Application PIN DynamoRIO RL-Bin Unoptimized RL-Bin Semi-optimized RL-Bin Fully optimized

perlbench 1.89x 1.73x 7.91x 1.38x 1.21x
bzip2 1.09x 1.05x 4.59x 1.06x 1.04x
gcc 2.35x 1.47x 6.42x 1.29x 1.12x
mcf 1.02x 1.01x 1.62x 1.02x 1.01x
Average 1.59x 1.32x 5.14x 1.19x 1.09x

Table 1: Normalized run-time of rewriters without added instrumentation. . A run-time of 1.0 is the run-time of the origi-
nal unmodified program without rewriting. For example, if the overhead of the rewriter is shown as 1.89X, that means the
overhead of the rewriter adds is 89% without added instrumentation.

is more challenging due to higher frequency of indirect control
transfer instructions.

Our experiments are done on a single core of Intel Core i5, 2.3GHz
CPU with 3 Mb cache and 8 Gb DDR3 memory on 32 bit Windows
7 operating system.

The goal of our binary rewriter is to perform light instrumenta-
tion efficiently and it is not optimized for heavy instrumentations
such as basic block counting which will significantly modify the
binary image of the application. As a result, performance overhead
of applications running under binary rewriter without instrumen-
tation has been measured.

The results are shown in table 1. Performance overhead was
measured for PIN and DynamoRIO as well as unoptimized, semi-
optimized, and fully optimized versions of RL-Bin.

The basic unoptimized version instruments every single CTI
in the code and does not remove the instrumentation when their
existence is no longer necessary.

The semi-optimized version has many improvements such as
removing instrumentations before all unconditional and some con-
ditional direct branches when allowed. Also, instrumentations are
improved and written in assembly and optimized as much as pos-
sible. Another optimization is function cloning of leaf functions
which removes the instrumentation of return instruction of these
functions.

Fully optimized RL-Bin uses static analysis during runtime to
detect return instructions, the most common form of indirect CTIs,
which do not need to be instrumented. In fact, we can show that
these instructions will return to one of the several memory locations
which have been seen and analyzed by our binary rewriter.

The high overhead of perlbench and gcc are due to the high
number of dynamically executed indirect CTIs. As it can be seen,
the main source of overhead for every dynamic rewriter is the
presence of such instructions which cannot be managed prior to
execution. Our overhead will go further down by refining our last
optimization technique to eliminate the instrumentation for more
return instructions.

Currently, it can be seen thatwe outperformPIN andDynamoRIO
by a huge margin. In fact, the overhead of PIN and DynamoRio is
1.59X and 1.32X respectively, whereas the overhead of RL-Bin is
1.09X (9%). In future work, we hope to lower the overhead of RL-
Bin further to low single digits, making it the first robust rewriter
suitable for use in deployed software.

4 RL-BIN APPLICATIONS
4.1 CFI
One way to ensure benign applications are not hijacked during
attacks is to use a defense mechanism called Control Flow Integrity
(CFI). CFI is one of the most effective application control-flow hijack
defense methods invented to date, and has many nice theoretical
properties ensuring its soundness and scope of defense. Here is how
CFI works. First, the control flow graph (CFG) of the application is
calculated using source code analysis, binary analysis, or execution
profiling. Then CFI ensures that software execution follows one
of the paths in its intended CFG. In order to enforce this security
policy, runtime checks are instrumented before control transfer
instructions to make sure that the control-transfer instruction (CTI)
is actually taking one of the edges from the CFG. The target address
must be the destination of one of the outgoing edges from the
current node. These runtime checks prevent any unintended control
flow transfers during the program’s execution.

CFI can protect against a variety of attacks that are based on
hijacking the control-flow of a benign application. These include
stack-based buffer overflow attacks, heap-based jump-to-libc at-
tacks, and return oriented programming (ROP). In any of these
attacks, the attacker needs to transfer control to the payload code
which could be injected by the attacker or may already be resident
on the computer. During this step, CFI intercepts the CTI, checks
its destination against allowed destinations, and thus terminates
any attack before execution of any malicious code.

Abadi et al [2] have derived strong theoretical properties of CFI.
CFI ensures that every execution step of an instrumented program
is either an attack step in which the program counter does not
change, or a normal step to a state with a valid successor program
counter. Thus, despite attack steps, the program counter always
follows the CFG. This would imply that the attacker cannot cause
the execution of code that is unreachable in the CFG.

4.1.1 CFI Related Work. The Control Flow Integrity scheme
was first introduced in 2005 by Abadi et al[1]. Its goal is to moni-
tor all CTIs to make sure that the application is following one of
the edges in its CFG, which is determined in advance. This would
ensure that the program is behaving according to its intended con-
trol flow. In the paper, their security policy dictates that a return
instruction must transfer the control to the next instruction after
the call site of the function. Also, indirect calls, may go to any
function whose address is taken. These functions will be discovered
by a flow-insensitive analysis of relocation entries in the binary.
Then a unique ID is assigned to the destination of each indirect CTI

Session 1: Binary Rewriting and Transformation FEAST'17, November 3, 2017, Dallas, TX, USA

20

and then CTIs will be instrumented to check the unique ID of the
destination against the ID which is determined ahead of time. If
the two ID match with each other, it means that the path existed
in the precomputed CFG. Otherwise, the program detects the ID
mismatch and reports the error. Their instrumentations were added
using Vulcan [7] which is a static binary rewriter. The overhead
caused by added instrumentation was 16 percent on average for
SPEC benchmark, which is fairly high for deployment on the live
systems.

Modular CFI (MCFI)[13] is another low overhead techniques
proposed for enforcing CIF which supports separate compilation of
modules. While MCFI has acceptable overhead (5%), there are two
reasons why our proposed method is more effective. First, MCFI is
dependent on having access to source code, which is not available
for most third party binary applications, while our method uses
only the binary file. Secondly, MCFI instrument the code statically,
whichmakes their method ineffective for the dynamically generated
or self-modifying code.

Some other CFI implementations have been proposed with just a
few percent overhead [20]. However, these implementations require
source code and the modification would be done as part of the
compiling process. Other related works, have tried to optimize the
checks and succeeded to decrease the overhead to just about 3.6 -
8.6 percent [21]. However, they still rely on static binary analysis
and that can lead to robustness problems, as discussed in Section 1.
Using a dynamic binary rewriter to perform the instrumentations
for CFI has been tested [15] and the overhead was reported to be
around 20 percent which is mostly due to the high overhead caused
by the binary rewriter itself. This is still too high for use in deployed
software.

4.1.2 Implementation of CFI using RL-Bin. Traditionally, there
are two main steps involved in the implementation of CFI. In the
first step, the CFG of the program is calculated using static anal-
ysis. Original CFI [1] relies on relocation entries and other static
information derived from static analysis of binary. This is prob-
lematic because the goal is to handle dynamically generated, self
modifying, and obfuscated code (all of which are present in benign
applications), for which the static information could be misleading.
So, the goal is to stay away from static analysis. To accomplish
this goal, we therefore need to adapt CFI to be purely dynamic.
We no longer use pre-calculated CFG of the binary. Instead, our
dynamically inserted checks will enforce the same security policies
based on information obtained from dynamic execution of the pro-
gram. In this paper we present a design of how to implement CFI in
RL-Bin. Implementation is ongoing, and evaluation is future work.

In the second phase of CFI, dynamic checks must be inserted
to ensure that only the paths in the CFG are followed. We use the
instrumentation module of our planned RL-Bin binary rewriter
to put these checks before indirect CTIs. Enforcing CFI based on
purely dynamic information is possible because of the following
reasons. First, CFI checks on returns can be done by instrument-
ing return instructions to check their destination to be the next
instruction after one of the original function call sites which has
been discovered so far. Also, returning to the most recent call site
can be enforced by implementing a low overhead shadow stack.
Similarly, CFI checks for indirect calls can also be implemented

purely dynamically by checking the destination of the call to be
one of the addresses seen so far using binary characterization [18],
a method that looks for address constants in binaries to discover
possible legal targets of indirect CTIs. In this way, a purely dynamic
scheme for CFI can be implemented.

Since we have developed the binary rewriter, we have a signifi-
cant advantage in comparison to just using a third-party rewriter.
Instead of inserting new checks for CFI, some of the CFI checks
could be integrated with RL-Bin’s inherent run-time checks needed
for its proper execution, and their optimizations can be integrated
too. The integration of checks will significantly decrease the extra
overhead from CFI. As a result, our implementation of CFI would
have comparable overhead with those using static rewriters despite
our implementation is being more robust.

4.2 Other security policies
CFI is by no means the only security policy that can be forced by
RL-Bin. As a matter of fact, our rewriter can be used to instrument
any security policy that can be implemented with light instrumen-
tation. The end result will be a low overhead tool which will be
practical for deployment on end-user systems. Examples of such
security policies are stack-canary insertion [6] for return address
modification detection, Program Shepherding [10], instruction-set
randomization [4], and return address protection using shadow
stacks [14].

5 CONCLUSION
In this paper, we proposed a new design for developing a binary
rewriter whichwill lead to a tool which is as robust as other dynamic
binary rewriters while the overhead is tolerable for monitoring real-
time systems in practice. Our experiments show that the overhead
of PIN and DynamoRio is 1.59X and 1.32X respectively, whereas
the overhead of RL-Bin is 1.09X (9%).

For future work, we will examine several possible applications
for RL-Bin including enforcing CFI. Using the proposed approach
will lead to such low overhead that it would be practical to enforce
CFI for every single application running on a live system.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-flow

integrity. In Proceedings of the 12th ACM conference on Computer and communi-
cations security. ACM, 340–353.

[2] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. A theory of
secure control flow. In International Conference on Formal Engineering Methods.
Springer, 111–124.

[3] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen,
Nathan Giles, and Rajeev Barua. 2013. A compiler-level intermediate representa-
tion based binary analysis and rewriting system. In Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, 295–308.

[4] Stephen W Boyd, Gaurav S Kc, Michael E Locasto, Angelos D Keromytis, and
Vassilis Prevelakis. 2010. On the general applicability of instruction-set ran-
domization. IEEE Transactions on Dependable and Secure Computing 7, 3 (2010),
255–270.

[5] Derek L Bruening. 2004. Efficient, transparent, and comprehensive runtime code
manipulation. Ph.D. Dissertation. Massachusetts Institute of Technology.

[6] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
guard: automatic adaptive detection and prevention of buffer-overflow attacks..
In Usenix Security, Vol. 98. 63–78.

[7] Andrew Edwards, Hoi Vo, and Amitabh Srivastava. 2001. Vulcan binary transfor-
mation in a distributed environment. (2001).

Session 1: Binary Rewriting and Transformation FEAST'17, November 3, 2017, Dallas, TX, USA

21

[8] Alan Eustace and Amitabh Srivastava. 1995. ATOM: A flexible interface for
building high performance program analysis tools. In Proceedings of the USENIX
1995 Technical Conference Proceedings. USENIX Association, 25–25.

[9] SA Hex-Rays. 2008. IDA pro disassembler. (2008).
[10] Vladimir Kiriansky, Derek Bruening, Saman P Amarasinghe, et al. 2002. Secure

Execution via Program Shepherding.. In USENIX Security Symposium, Vol. 92. 84.
[11] Michael A Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan Snavely.

2010. Pebil: Efficient static binary instrumentation for linux. In Performance
Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium on.
IEEE, 175–183.

[12] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Acm sigplan notices, Vol. 40. ACM, 190–200.

[13] Ben Niu and Gang Tan. 2014. Modular control-flow integrity. ACM SIGPLAN
Notices 49, 6 (2014), 577–587.

[14] Pádraig OâĂŹSullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Rajeev
Barua, and Angelos D Keromytis. 2011. Retrofitting security in cots software with
binary rewriting. In IFIP International Information Security Conference. Springer,
154–172.

[15] Mathias Payer, Antonio Barresi, and Thomas R Gross. 2015. Fine-grained control-
flow integrity through binary hardening. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment. Springer, 144–164.
[16] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre.

2001. Plto: A link-time optimizer for the Intel IA-32 architecture. In Proc. 2001
Workshop on Binary Translation (WBT-2001). Citeseer.

[17] Matthew Smithson, Kapil Anand, Aparna Kotha, Khaled Elwazeer, Nathan Giles,
and Rajeev Barua. 2010. Binary rewriting without relocation information. Uni-
versity of Maryland, Tech. Rep (2010).

[18] Matthew Smithson, Khaled ElWazeer, Kapil Anand, Aparna Kotha, and Rajeev
Barua. 2013. Static binary rewriting without supplemental information: Over-
coming the tradeoff between coverage and correctness. In Reverse Engineering
(WCRE), 2013 20th Working Conference on. IEEE, 52–61.

[19] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen
De Bosschere. 2005. Diablo: a reliable, retargetable and extensible link-time rewrit-
ing framework. In Signal Processing and Information Technology, 2005. Proceedings
of the Fifth IEEE International Symposium on. IEEE, 7–12.

[20] Zhi Wang and Xuxian Jiang. 2010. Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity. In Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 380–395.

[21] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical control flow integrity and
randomization for binary executables. In Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 559–573.

Session 1: Binary Rewriting and Transformation FEAST'17, November 3, 2017, Dallas, TX, USA

22

	Abstract
	1 Introduction
	1.1 Limitations of static binary rewriters
	1.2 Limitations of existing Dynamic Binary rewriters

	2 RL-Bin: proposed binary rewriting approach
	2.1 Methodology

	3 Implementation and Results
	4 RL-Bin Applications
	4.1 CFI
	4.2 Other security policies

	5 Conclusion
	References

