
DamGate: Dynamic Adaptive Multi-feature Gating in Program Binaries

Yurong Chen, Tian Lan, Guru Venkataramani

1

De-bloat: Make software “slimmer” by removing unused features

• Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky. "Software bloat
analysis: finding, removing, and preventing performance problems in modern large-scale object-
oriented applications."

• Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg, and Gary
Sevitsky. "Scalable runtime bloat detection using abstract dynamic slicing."

• Yufei Jiang, Dinghao Wu, and Peng Liu. "JRed: Program Customization and Bloatware Mitigation
Based on Static Analysis."

• Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. "Feature-Based Software Customization: Preliminary
Analysis, Formalization, and Methods.”

2

Static:
Remove unused code

Dynamic:
Remove inefficient runtime behavior

What’s more?

• Undesired interactions among different features

• Varying user requirements

3

Goal of Design

• Be compatible with de-bloating
• Customize binaries after de-bloating
• Prevent undesired interactions among features
• Instrument binary to add checker functions
• Enable dynamic reconfiguration of feature profile
• Multiple features are kept in binaries and managed by config file

Ideas

4

Definitions

• Each feature, denoted by 𝐹𝑖, is defined as a set
of functions that can perform certain tasks
independent of other functions outside this set,
e.g., 𝐹𝑖 = { 𝑓$% , 𝑓&% , ..., 𝑓'%}.

Examples
(from Libre-office)

Feature Name Seed Function
Save file SfxObjectShell::SaveTo_Impl

Print SfxViewShell::ExecPrint

Insert image SwView::InsertGraphic

5

• Seed function 𝑓(% ∈ 𝐹𝑖, is used to identify the feature. Seed
functions are representative functions of the features they
belong to. (we assume features can be identified by seed
functions: how to get the seed functions in practice;)

• Gate: a function checker that verify if the
target function is allowed according to current
protection policy.

System Overview

Example: LibreOffice

7

Feature a

Feature b

a1: 0x00007ffff5087584
a2: 0x00007ffff507c44e
a3: 0x00007ffff589a837
b1: 0x00007fffce42c97e
b2: 0x00007fffce42c9da
b3: 0x00007fffce42c8bf
b4: 0x00007fffcdc52fe2
y1: 0x00007ffff4ef78d8
y2: 0x00007fffcdab3994
q: 0x00007fffcda8fff0

Example

8

Feature Identification

• Call Graph (CG) generation from binary:
• Static tool: CodeSurfer (from GrammaTech)
• Dynamic tool: Pin (from Intel)

• CG Tainting: CG + seed functions
• Mark function calls as direct or indirect ones in the CG

9

Feature Customization

• Direct Gate : check feature
• Indirect Gate: check control transfer + feature
• Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. "Control-flow

integrity."
• Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen

McCamant, Dawn Song, and Wei Zou. "Practical control flow integrity and
randomization for binary executables.”
• Ben Niu, and Gang Tan. "Modular control-flow integrity."

• Binary rewriting: Dyninst (from University of Wisconsin-Madison and
University of Maryland)

10

Feature Customization: Direct Gate

Direct Gate

11

Feature Customization: Indirect Gate
Indirect Gate

4

12

1
Check integrity

2
Check feature

3

Call foo()

13

Evaluation LibreOffice
14

Evaluation LibreOffice

U: unique functions that only belong to current feature
C: common functions shared by current feature and other features
O: functions that don not belong to current feature but are still accessed

15

Summary & Future work

• Tools:
• Feature identification: CodeSurfer, Pin
• Feature customization: Dyninst

• Gating policy;

• Open source, automated framework

16

Thank you!

N00014-17-1-2786 & N00014-15-1-2210

17

