Security Analysis of Next-generation Connected Vehicle based Transportation

Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Z. Morley Mao, Henry X. Liu University of Michigan ACM CCS FEAST workshop 2017

UNIVERSITY OF MICHIGAN

TRANSPORTATION RESEARCH INSTITUTE

Background: Connected Vehicle (CV) technology

- Wirelessly connect vehicles & infrastructure
- Goal: Dramatically improve mobility, safety, environmental impact, & public agency operations

Background: Recent advances

- Will *soon* transform transportation systems today
- 2016.9, USDOT launched CV Pilot Program
 - National effort to deploy, test, & operationalize CV-based transportation systems
 - Launched in 3 cities

 2016.11, USDOT proposed to mandate CV tech in all light-duty vehicles, starting from as soon as 2020

Cybersecurity of CV-based transportation

- However, such dramatically increased connectivity also opens a new door for **cyber attacks**
- **Highly important** to understand potential security vulnerabilities & new security challenges
 - Need to ensure *security* & *safety* for vehicles, transportation infrastructure, drivers & pedestrians
 - Need to perform study *now* so that they can be proactively addressed before nationwide deployment

Our work

- Start by performing security analysis
- **Current focus**: Intelligent Traffic Signal System (I-SIG)
 - Use real-time CV data for intelligent signal control
 - USDOT sponsored design & impl.

Threat model

- Start by performing security analysis
- **Current focus**: Intelligent Traffic Signal System (I-SIG)
 - Use real-time CV data for intelligent signal control
 - USDOT sponsored design & impl.
- Threat model: Malicious vehicles send spoofed data

Preliminary results

- Finding: Vulnerability in the smart traffic control logic
 - Spoofed data from *one single attack vehicle* can greatly manipulate the traffic control
 - The smart control algorithm can be fooled to:
 - Add tens of "ghost" vehicles
 - Extend green light by spoofing to a *late arriving* vehicle

Congestion attack results

• One car to cause massive road-blocking effect!

Open questions

- More security analysis
 - Other types of attack goals
 - *Personal gain*: Reduce attack vehicle's travel time at the cost of others
 - *Safety attack*: Increase the safety risk of a specific or a set of vehicles
 - Other CV-based transportation systems
 - 60+ types of open sourced prototypes developed by USDOT
- Defense solution directions
 - Data spoofing detection
 - Systematically *transform CV systems* to include detection logic
 - Hardware-assisted data spoofing prevention
 - E.g., leverage Intel SGX, ARM TrustZone
 - Need systematic mechanism to *partition protocol binaries*

- A full paper of our current findings will appear in NDSS'18
- Any comments?