
CPS Runtime Architecture And
Automated Transformation of Applications

 Lui Sha
Department of Computer Science

University of Illinois
Urbana IL., USA
lrs@illinois.edu

ABSTRACT

National Academy of Science’s study on dependable software
systems concluded that simplicity is the key. Reducing the
complexity of software has been investigated by the FEAST
community on automated transformation of application software
and by the CPS runtime community on the development of
runtime architectures that simply the development of
applications. This creates the need of collaboration between
these two communities.

The goal of this review paper is to bring this need to the
attention of FEAST community.

CCS CONCEPTS

 Software system structures→ Software Architecture;

KEYWORDS
CPS runtime architecture, automated software transformation,
complexity reduction

1 INTRODUCTION

“One key to achieving dependability at reasonable cost is a serious
and sustained commitment to simplicity, including simplicity of
critical functions and simplicity in system interactions. This
commitment is often the mark of true expertise. There is no
alternative to simplicity. Advances in technology or development
methods will not make simplicity redundant; on the contrary, they
will give it greater leverage.”

Software for Dependable Systems: Sufficient Evidence?
Committee on Certifiably Dependable Software, National
Academy of Science.

Reducing the complexity of software has been investigated by
different computing communities in parallel. The focus of FEAST
has been the automated transformation of application software
to make it more efficient. Many assume that runtime
architecture remains unchanged. However, runtime architecture
itself evolves. The collaboration between these two communities
is important.

The goal of this paper is to bring this need of collaboration to the
attention of FEAST community, using the example of Physically
Asynchronous Logically Synchronous (PALS) architecture
developed for networked control systems [3][6][9][11].

2 Physically Asynchronous Logically
Synchronous Architecture

2.1 Background

The development of runtime architecture abstractions to
simplify application development has played an important role
in the advancement of computing systems. For example, the
virtual machine abstraction allows engineers to assume they
were the only users of the machine and atomic transactions
abstraction allows engineers to assume that distributed
transactions were executed one at a time.

PALS is a CPS runtime architecture designed to simplify the
development of networked control systems such as avionics.
Traditionally, to ensure that replicated subsystems are running
in lock-steps, custom logics are added to network hardware to
synchronize the executions of distributed nodes, e.g., Boeing
777’s SafeBus [1] or TTEthernet [2]. Custom network hardware
solutions are costly and place severely restrictions on possible
network topologies. The PALS [3] approach is a software
alternative to custom networks. PALS can use any network
technology, provided that it meet the real time and fault tolerance
requirements of avionic systems. This reduces cost and increases the
flexibility in the development of modern avionics. The correctness of
PALS was formally proved at the protocol level by model
checking [9] and by theorem prover [11] .

As is, networked control system is a globally asynchronous
locally synchronous system, because the skews between
distributed clocks can be bounded but not eliminated. When
applications on each node are driven by their local clocks,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
FEAST'17, November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5395-3/17/11…$15.00
https://doi.org/10.1145/3141235.3141238

Session 2: CPS, Mobile, and Intel SGX FEAST'17, November 3, 2017, Dallas, TX, USA

31

asynchronous interactions arise. Managing asynchronous
interactions is a complex task. Rockwell Collins Inc.
implemented a dual redundant flight control system in the lab
with and without PALS [6]. The model checking time was 35
hours when logic for asynchronous interactions is embedded in
the applications. Running on top of PALS middleware, the model
checking time of the applications was dropped to less than 30
seconds [6].

PALS was awarded by American Institute of Aeronautics and
Astronautics the David Lubkowski memorial award for the
Advancement of Digital Avionics in 2009. PALS middleware,
PALSWare, consists about 2000 lines of C code and the source
code was formally verified in [14].

PALS is an effective alternative to the custom hardware
approach because it allows avionics developers to choice from a
larger variety of network technologies. On top of PALSWare,
engineers can write application code as if it were running on a
perfectly synchronized computer at the fastest rate that can be
guaranteed by the network. However, the challenge of
transitioning any new runtime architectures into practice is the
cost of transforming the legacy applications for the new runtime
time system. We wonder if automatic translation of applications
designed for legacy runtime system to new runtime systems is
possible. In particular, PALSWare APIs are very simple.

2.2 PALSWare

As mentioned before, networked control system is known as
globally asynchronous locally synchronous (GALS). Distributed
race condition could arise if it is used as is. For example, a
command was sent to replica 1 and replica 2. Because of the
clock skews, Replica 1 receives the command in period 10 but
Replica 2 receives the command in period 9. This leads
divergence of actions in the two replicas.

Figure 1: Distributed Race Condition

Figure 2 illustrates that under the PALS protocol the messages
exchanges can only occur during the green colored zones and
the system will behavior as if it were regulated by a perfect
global clock. Using PALSWare, distributed applications can use
synchronous design on top of physically asynchronous systems,
incurring exponential reduction in verification state space. PALS
protocol has minimal communication overhead because no
synchronization messages are needed.

 Figure 2: Logical Synchrony

Figure 3 illustrates the role of PALSWare in a networked control
system. The PALS architecture pattern defines the following
constraints to be satisfied [14]:

1. Distributed applications at each node are triggered by
the rising edge of its local PALS clock with period T.

2. PALS Clock period: Distributed computations that
require consistent views and actions cannot be achieved faster
than the end to end communication delay.

 Figure 3: System View

Therefore, the PALS Clock Period T must satisfy the following
inequality:

 (݊݅݉ߤ − 2 ,ݔܽ݉ߙ) 2 + max + ݔܽ݉ߤ ≤ ܶ
3. PALS Causality Constraint: Because of the max clock

skew (2) between the sender PALS client and the receiver,
when the sender is in its local PALS period i, the receiver
may get the message in its local PALS period (݅ – 1) if the

network delay is shorter than 2. PALSWare buffers such
message and ensure that when a message is sent at sender’s local
PALS period ݅ , it will physically be received by receiver at its
local PALS period ݅ and be ready to be used in receiver’s next
period (݅ + 1).

Session 2: CPS, Mobile, and Intel SGX FEAST'17, November 3, 2017, Dallas, TX, USA

32

PALSWare works under the following 5 conditions:

1. Bounded Clock Error: Each node ݆ has access to an
approximation of the true global time ݐ via a local clock ܿ ݆ ,
where the maximum error of each local clock is ε, i.e., |ܿ ݆ – ݐ | <
ε. In order words, the difference between any pair of clocks is
bounded by 2 ε. This is done by clock synchronization software.

2. Monotonic Local Clocks: the value of each local clock,
increases monotonically. This is enforced by real time operating
systems.

3. Bounded Computation Time: the computation of a node’s
new local state and outputs takes time ߙ , where ݔ ܽ ݉ ߙ ≥ ߙ ≥ ݅ ݉ ߙ . This is done by real-time software design and real time
scheduling at each node.

4. Bounded Message Delivery: messages are reliably delivered to
their destinations in time ߤ , where ߤ ݉ ݅ n ≤ ݔ ܽ ݉ ߤ ≥ ߤ . This is
enforced by the real time network.

5. Fail Silent Nodes: Nodes stop silently upon failure, i.e. nodes
do not behave maliciously or randomly on failure. This is
enforced by the fault tolerant design needed for networked
control systems such as avionics. PALSWare provides two main
services for the applications.

1. Application activation service: Implement PALS clocks
uniformly at each node.

2. PALS messaging service: When message is sent in step ݅ , it
will only be available for read in step ݅ +1.

PALSWare main API functions are: open_tx_port, open_rx_port,
timer_create, wait_schedule, send, and recv.

2.3 Dynamic Measurements: BLS

The active standby application represents a typical distributed
fault-tolerant redundant system. There are two physically
separate systems (Side 1 and Side 2) which communicate to
maintain an active- standby paired state at all times. The 5
essential design requirements are [3]:

1. Both controllers should agree on which controller is active.

2. A controller that is not fully available should not be the active
controller if the other controller is fully available.

3. If a controller is failed the other controller should become
active.

4. The user can always change the active controller.

5. In other cases, the active controller should not change, unless
its availability changes, or the user requests.

Requirements 1-3 are necessary to guarantee both fault-
tolerance and the consistent agreement between two controllers.
Requirement 4 allows the user to designate the active controller.

Requirement 5 is to prevent unnecessary fluctuation of the
status.

Figure 4 illustrate a simple active standby system using
PALSWare. The use of PALSWare consists of the following
steps:

1. Create sending or receiving ports for networking and start a
timer with the given PALS period. → Client Activation Service

2. Start an infinite loop for periodic execution.

3. Wait for timer to expire at next PALS period. → Client
Activation Service

4. Read any incoming message from its receiving ports. → PALS
Messaging Service

5. Perform computation.

Figure 4: An Example Application of PALSWare

From an application development perspective, PALSWare has
the following benefits.

1. Real-time virtual synchrony: Using PALSware, distributed
applications can use globally synchronous design on top of
typical physically asynchronous systems, incurring exponential
reduction in verification state space.

2. Optimal performance and efficiency: PALS protocol has
minimal communication overhead.

3. Middleware and design tool support: PALSWare and AADL
design tools enable rapid prototyping and design verification of
real-time distributed applications [3].

However, a challenge faced by the CPS runtime system
community has been the cost of porting legacy application
software for an old runtime system to a new runtime system.

We hope that the FEAST community and the CPS runtime
architecture community can work together to further the shared
goal of developing simpler and more efficient CPS systems.

4 CONCLUSIONS

As noted by National Academy of Science’s study on dependable
software systems, simplicity is the key.

Session 2: CPS, Mobile, and Intel SGX FEAST'17, November 3, 2017, Dallas, TX, USA

33

Reducing the complexity of software has been investigated by
different computing communities in parallel. The focus of FEAST
has been the automated transformation of application software.
The focus of runtime architecture focuses on how to make the
application development simpler.

This creates the need of collaboration between these two
communities. The goal of this paper is to bring this need to the
attention of FEAST community, using the example of Physically
Asynchronous Logically Synchronous (PALS) architecture
developed for networked control systems. .

ACKNOWLEDGMENTS

This work was partially supported by ONRN00014-17-1-2783. I
want to thank Dr. Min-Yong Nam’s assistance in the preparation
of this review paper.

REFERENCES
[1] Hoyme, Ken, Kevin Driscoll, 1992, SAFEbus, Proc. IEEE/AIAA Digital
Avionics Systems Conference (DASC’92), pp. 68-73.

[2] Kopetz, Hermann, G. Bauer, The time-triggered architecture, 2003,
Proceedings of the IEEE, Vol. 91, Issue 1, pp. 112-126.

[3] Al-Nayeem, Abdullha, Mu Sun, Xiaokang Qiu, Lui Sha, Steven P. Miller,
Darren D. Cofer, 2009, A Formal Architecture Pattern for Real-Time Distributed
Systems, IEEE 30th Real-Time Systems Symposium (RTSS), pp. 161-170

[4] Jhala, Ranjit, Rupak Majumdar: Software model checking. ACM Comput.
Surv. 41(4) (2009)

[5] Clarke, Edmund, Daniel Kroening, Flavio Lerda: A Tool for Checking ANSI-C
Programs. TACAS 2004: 168-176

[6] Miller, Steven P., Darren D. Cofer, Lui Sha, Josė Meseguer, Abdullah Al-
Nayeem, 2009, Implementing Logical Synchrony in Integrated Modular Avionics,
IEEE/AIAA 28th Proc. of Digital Avionics Systems Conference (DASC), pp. 1.A.3-
1 - 1.A.3-12.

[7] Chaki, Sagar, Arie Gurfinkel, Soonho Kong, Ofer Strichman, 2013,
Compositional Sequentialization of Periodic Programs, Proc. of VMCAI, Springer.

[8] Feiler, Peter H., David P. Gluch, 2012, Model- Based Engineering with AADL
– An Introduction to the SAE Architecture Analysis and Design Language,
Addison-Wesley.

[9] Meseguer, Josė, Peter C. Ölveczky, 2010, Formalization and Correctness of the
PALS Architectural Pattern for Distributed Real-Time Systems, Proceedings of the
12th International Conference on Formal Engineering Methods and Software
Engineering, Pp. 303-320.

[10] Ölveczky, Peter C., Josė Meseguer, 2007, Semantics and Pragmatics of Real-
Time Maude, Journal of Higher-Order and Symbolic Computation, Vlusm 20,
Issue 1-2, pp. 161-196.

[11] Steiner, Wilfried, John M. Rushby, 2011, TTA and PALS: Formally Verified
Design Patterns for Distributed Cyber-Physical Systems, IEEE/AIAA 30th Proc. of
Digital Avionics Systems Conference (DASC) pp.7B5-1 - 7B5-15.

[12] Rushby, John M., 1999, Systematic Formal Verification for Fault-Tolerant
Time-Triggered Algorithms, Transactions of Software Engineering, Vol 25, Issue
5, pp. 651-660.

[13] Bae, Kyungmin, Joshua Krisiloff, Peter C. Ölveczky, Josė Meseguer, 2012,
PALS-Based Analysis of an Airplane Multirate Control System in Real-Time
Maude, International Workshop on Formal Techniques for Safety-Critical
Systems (FTSCS).

[14] Min-Young Nam, Lui Sha, Sagar Chaki, and Cheolgi Kim, Applying
Software Model Checking to PALS Systems, IEEE/AIAA 33rd Digital Avionics
Systems Conference, 2014.

Session 2: CPS, Mobile, and Intel SGX FEAST'17, November 3, 2017, Dallas, TX, USA

34

