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ABSTRACT

Trusted Execution Environment (TEE) is designed to deliver a safe
execution environment for software systems. Intel Software Guard
Extensions (SGX) provides isolated memory regions (i.e., SGX en-
claves) to protect code and data from adversaries in the untrusted
world. While existing research has proposed techniques to execute
entire executable files inside enclave instances by providing rich
sets of OS facilities, one notable limitation of these techniques is the
unavoidably large size of Trusted Computing Base (TCB), which
can potentially break the principle of least privilege.

In this work, we describe techniques that provide practical and
efficient protection of security sensitive code components in legacy
binary code. Our technique dissects input binaries into multiple
components which are further built into SGX enclave instances.
We also leverage deliberately-designed binary editing techniques
to retrofit the input binary code and preserve the original program
semantics. Our tentative evaluations on hardening AES encryp-
tion and decryption procedures demonstrate the practicability and
efficiency of the proposed technique.

1 INTRODUCTION

With the increasing needs to deploy applications on the third-party
untrusted environments (e.g., cloud), software attacks are widely
launched to steal privacy information from the victim programs.
Cutting-edge code reuse attacks exploit software vulnerabilities
(e.g., buffer overflow) and leverage code snippets in the victim pro-
gram to undertake attack activities. In addition, many sophisticated
attackers can (indirectly) inspect the execution behavior of victim
programs and reveal secret information of the running process.

A promising direction to protect benign applications from cutting-
edge threats (e.g., code reuse attacks) is to execute programs in
the Trusted Execution Environment (TEE), such as Intel Software
Guard Extensions (SGX). In general, SGX technique provides a se-
cure memory region (called SGX enclave) in the process address
space where the application code and data can be executed safely.
Hardware guarantees the isolation of the enclave instances, and it
also encrypts the memory pages before storing on the disk.
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To protect (legacy) binary code from adversaries using SGX tech-
niques, existing research has proposed techniques to put the entire
executable file into the enclave for execution [2, 4, 28]. By providing
rich sets of system supports (e.g., a library of OS facilities), legacy
binaries can be directly executed inside SGX enclaves without mod-
ifications for most of the cases. However, a general concern for
such “heavy-weight” approaches is that usually the Trusted Com-
puting Base (TCB) is largely increased, which potentially violates
the principle of least privilege [16, 22]. We also notice some recent
work proposing to partition the software system into several com-
ponents according to their dependency on program secrets [16];
code components that depend on the program secrets would be
protected by the SGX enclave instances. While the overall approach
shall notably decrease the size of TCB, their approach is designed
to instrument source code, which limits its application scope since
there are large amount of legacy binaries in the wild.

In this research, we propose novel techniques to perform binary
retrofitting and harden (security sensitive) functions with SGX
enclaves. Our technique is designed to dissect binary code into
multiple components; each component contains one or several
functions, and each component will be put into an SGX enclave
instance for protection. To deliver a flexible design, we create an
SGX “interface” library for each enclave, where “interface” functions
are provided to perform SGX enclave initialization, teardown as
well as invoking each protected function in the corresponding
enclave instance. The input binary code is instrumented, where the
body of protected functions are rewritten into “trampoline” code
and the assembly instructions of the protected functions are built
into SGX enclave instances. During runtime, the “trampoline” code
redirects the control flow from the original function entry point
into the corresponding SGX interface library, and further reach the
protected functions in the SGX enclave instance. Also, since many
challenges in binary retrofitting are fundamentally undecidable, we
propose well-designed exception handling techniques to capture
and fix execution errors, which deliver a faithful runtime behavior.

To protect security sensitive functions in cryptosystems, we eval-
uate our technique towards a widely-used cryptographic algorithm
implementation, i.e., the AES implementation in OpenSSL. Our pre-
liminary evaluations protect AES core encryption and decryption
procedures, and the experimental results have demonstrated the
feasibility and efficiency of the proposed technique.

2 BACKGROUND OF INTEL SGX
TECHNOLOGY
Software Guarded Extensions (SGX) is a set of extended x86 instruc-

tions that provide isolated execution environments, called enclaves,
within a single process. Technically, an enclave run in the user
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mode (ring 3) of an Intel CPU, but the SGX hardware guarantees
that accesses from outside are always properly mediated even if
the entire software stack, including the operating system, driver,
BIOS and VMM, is compromised. In other words, the CPU and code
inside an enclave are enough to form a Trusted Computing Base
(TCB). A physical memory region called Processor Reserved Mem-
ory (PRM) is reserved exclusively for SGX execution. SGX enforces
page based access control by extending the processor’s Page Miss
Handler (PMH). The Enclave Page Cache (EPC) resides in the PRM
and holds enclave code and data. The system software is in charge
of managing EPC pages for enclaves. While the system software is
untrusted, SGX tracks the properties of EPC pages through a data
structure called the Enclave Page Cache Metadata (EPCM), which
is also located in the PRM.

The functionalities of SGX are encoded as leaf functions within
the ENCLS (enclave supervisor) and ENCLU (enclave user) instruc-
tion mnemonics. The system software uses the ENCLS instruction
to invoke the specified privileged leaf function for managing and
debugging code in enclaves. Users utilize the ENCLU instruction to
invoke the specified non-privileged leaf functions for enclave state
transitions and retrieving key materials inside the enclave. The life
cycle of an enclave begins with the creation of an SGX Enclave
Control Structure (SECS) page for the enclave when the system
software issues the ECREATE leaf function; The system software
then uses the EADD leaf function to load initial code and data into
the enclave. While loading the enclave, the system software also
updates the enclave measurement using the EEXTEND leaf function.
After the enclave code and data are loaded, the system software
can execute the EINIT leaf function to mark the enclave as initial-
ized and finalize the enclave measurement to establish the enclave
identity. The correctness of the enclave can be verified by generat-
ing a cryptographic report of the enclave measurement with the
EREPORT leaf function and attested to a local enclave through local
attestation or to a remote party through remote attestation. The
ring-3 application is now allowed to perform a controlled jump into
the enclave code using EENTER leaf function; EENTER also switches
the processor to enclave mode. The enclave code can use the EEXIT
leaf function to return the execution to the host application. When-
ever an exception or fault occurs inside the enclave, the processor
performs an Asynchronous Enclave Exit (AEX) before invoking the
system software’s exception handler. The AEX saves the enclave
state in the enclave’s State Save Area (SSA) frame, restores the state
saved by EENTER and changes the instruction pointer (RIP) to point
to a trampoline area (referred to as the asynchronous exit handler)
in the host application. The RIP is pushed onto the stack before
jumping to the system software’s exception handler. As a result,
after the exception is handled by the system software, execution
is returned to the trampoline area which is expected to return to
enclave mode and continue the computation using the ERESUME leaf
function. An enclave is destroyed with the EREMOVE leaf function
after the EPC pages are deallocated by the system software.

3 RELATED WORK

SGX has been receiving much attention since it was introduced as
it is widely supported on commodity CPU hardwares. Extensive
works have been published to enable the quick deployment of vari-
ous applications on SGX. The library OSes, Haven [4] for Windows
and Graphene-SGX [28] for Linux, enable running unmodified bi-
naries inside SGX enclaves. Scone [2] uses SGX to protect Linux
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container processes with a small TCB and a low performance over-
head. Eleos [19] implements exit-less system calls and exit-less
paging in enclaves. It introduces a Secure User-managed Virtual
Memory (SUVM) abstraction that implements application-level
paging inside the enclave to reduce the overhead of enclave exits
due to paging. PANOPLY [27] provides a new abstraction called
a micro-container which is a unit of code and data isolated in the
enclaves. It has a minimized TCB and yet offers rich OS abstractions
to enclave code. SGX has also been used to enable trustworthy data
analytics in the cloud [23] and secure isolation of the states of Net-
work Function Virtualization (NFV) applications [24], to enhance
the security and privacy of Tor [14], to protect distributed sandbox
instances [13] and data-oblivious machine learning algorithms [18]
from potentially malicious computing platforms.

Lind et al. propose an automatic source-level partitioning frame-
work called Glamdring [16]. A developer first annotates security-
sensitive application data. Glamdring then automatically partitions
the application into untrusted and enclave parts, places security-
sensitive functions inside the enclave, and adds runtime checks and
cryptographic operations at the enclave boundary to enforce the
confidentiality of sensitive input and integrity of sensitive output.

Intel states that SGX does not provide explicit protection from
side-channel attacks. It has been shown that SGX suffers from a
type of controlled-channel attacks [34] and a list of microarchitec-
tural attacks [5, 10, 15, 17]. Defenses are proposed to detect the
frequent AEXs in these attacks using Transactional Synchroniza-
tion Extensions (TSX) [25] or checking program execution time in
its control-flow graph [8]. A recent work [33] further demonstrates
that a page-level attack can still steal information from the enclaves
without inducing a large number of AEXs.

4 DESIGN

In this section we outline the design of the proposed technique. To
this end, we first present an instrumentation example and explain
each component of a typical instrumentation product. We then
present overview of each instrumentation step.
Instrumentation Example In general, the proposed technique
supports flexible configurations to utilize SGX techniques. That
is, users can configure our tool to put one or multiple functions
into different SGX enclaves. The Intel SGX SDK provides a set of
routine functions to support SGX enclave initialization, destruction,
access control, and other security-related operations. To provide
a flexible and mostly reusable design, functions belonging to the
same enclave are associated with a set of such standard routines.
Each set of routines are compiled into one shared library, providing
interface functions to invoke the protected code in the enclave
instances. By maintaining the interface of each enclave as a shared
library, the protected functions become mostly “reusable” to provide
functionalities secured by SGX.

Figure 1 presents an instrumentation example, in which the input
binary is compiled from a program of three functions (Figure 1a).
In this example we put two functions (Func2 and Func3) into two
enclaves, separately. The instrumentation output is shown in Fig-
ure 1b. As previously presented, we maintain common routine code
for each enclave as one shared library (second column in Figure 1b);
“interface” functions to trigger protected code in the associated en-
clave of the shared library are exported (such library is denoted
as SGX interface library later in this paper). The original content
of both functions are rewritten into trampolines (FT2 and FT3),
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(a) Input Binary. (b) Instrumented Outputs.
Figure 1: Example of binary instrumentation using SGX en-
claves. Two functions (Func1 and Func2) are put into two en-

claves for protection.

which forward function calls to corresponding interface code, and
further to code in the enclaves. While control transfers between the
application code and each shared library are normal function calls,
specific SGX instructions are used to bridge libraries and enclave
instances (i.e., through SGX ECALL and OCALL).

Instrumentation Overview To perform SGX-based binary instru-
mentation, we first launch in-place binary editing to rewrite several
leading bytes of the target binary functions into trampolines; tram-
poline code will redirect control-flow transfers to its corresponding
SGX interface library and further invoke the protected function in
the enclave instance. Well-designed in-place binary rewriting can
preserve the original binary context, and hence delivering a faithful
rewritten output (§4.1). For each protected function, we perform
disassembly and recover their assembly instruction sequences. We
then launch a set of analysis passes to recover higher-level infor-
mation (e.g., function prototype) of the protected function; such
information is critical to preserve the functionality correctness
and support SGX access control in the instrumented output (§4.2).
Furthermore, considering the general difficulty in retrofitting bina-
ries, it is not inaccurate to assume that some data or code pointers
would become broken due to the relocation of the SGX-hardened
functions. Hence, we propose a deliberately designed exception han-
dling mechanism to catch and process potential runtime exceptions
(§4.3).

Scope and Limitations Our tool is mainly designed to protect
legacy binaries on x86 platforms. The instrumented binary can ben-
efit from the SGX technique which is widely supported by recently-
released Intel hardware. In this research we propose to perform
function-level protections. As Intel SGX supports to execute arbi-
trary length of code components, it should be also interesting to
investigate the feasibility on protecting finer-grained code snippets,
such as critical control predicates.

Our tool is designed to protect legacy code, including stripped bi-
naries containing no or minimal debug and relocation information.
While function information is mostly absent in such binaries, re-
cent work has made promising progress in this direction [3, 26, 32].
Hence, in this research we assume the function information is
available before instrumentation. The current implementation in-
struments 64-bit ELF binaries since ELF is the default format on
Linux platforms and 64-bit is the mainstream. Nevertheless, the
proposed technique is independent with the underlying architec-
ture details, and hence not difficult to port to other platforms, like
32-bit Linux.
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1 trampoline_foo:

2 push %rbp

3 mov %rsp,%rbp

4 push $return_addr

5 push %rax

6 mov $sgx_interface_foo ,%rax
7 xchg %rax, (%rsp)

8 ret
9 pop
0 ret

%rbp

=

Figure 2: Trampoline
Function foo.

Code for In-Place Binary Editing of

4.1 Binary Editing

We now elaborate on the design of the binary editing process. In
general, code components in (stripped) binary code are pointed
to through concrete addresses (in terms of absolute or relative ad-
dresses). Hence, binary code is generally considered “un-relocatable”;
any manipulation that changes the relative position of binary com-
ponents can potentially break the pointers of concrete addresses in
the context and lead to ill-functionalities during runtime.

In general, existing binary instrumentation approaches can be
divided into several categories. The first category delivers in-place
editing which performs byte-level binary rewriting and can pre-
serve the original positions of all reachable binary components in
the context [20]. Some other commonly-used techniques perform
patch-based or replica-based instrumentation [6, 11]. Wrappers are
broadly adopted to redirect the control transfers and preserve the
original semantics, which can usually lead to non-trivial execution
slowdown or binary space increase. We also notice a number of
recent techniques proposing to fully recover relocation information
before instrumentation; once the code components become relocat-
able, it shall be safe to perform arbitrary instrumentation [29, 30].

Since one promising application of our technique is to harden
cryptosystems, where complex data structures and control flows
shall exist, in this research in-place binary editing is adopted for
the seek of delivering a conservative and faithful instrumentation.
In general, for each function that is going to be placed inside the
SGX enclave, we analyze the input binary and locate its position
in the binary code. We then rewrite the starting bytes of the target
function with a trampoline routine; this routine will forward the ex-
ecution to the corresponding SGX interface library and further into
the enclave. By editing the beginning bytes of the target functions,
it is safe to assume that any function call towards these functions
can be rerouted to their callees in the enclave, and thus retaining
the inter-procedural transfer correctness.

Trampoline Code In-place binary editing rewrites bytes in a bi-
nary code. To be compatible with the editing context (e.g., avoid
breaking pointers), usually code snippets used for substituting the
original binary content are deliberately designed to be as concise
as possible.

A sample trampoline code used in this research is shown in Fig-
ure 2. Note that libraries (including the SGX interface libraries) are
usually loaded at the higher addresses in a process memory space.
In other words, memory address of each SGX interface function
is usually larger than 4 bytes on 64-bit x86 platform. On the other
hand, each time push instruction can only store a 4-byte value on
top of the stack.

One common trick is that mov instruction can operate a 8-byte
operand one time as long as the destination operand is rax. Hence,
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we first store the address of the trampoline callee into register rax
(line 6), and then use xchg to exchange value in register with the top
of the stack (where the original value of rax stores). ret instruction
is then used to perform unconditional control transfers with the
address on top of the stack as its destination (line 8).

Since the trampolines are located in the application code at
the lower address of a process memory space, we can directly
store the “return_addr” on the stack with one instruction (line
4); “return_addr” represents the address of the instruction on line 9.
After finishing the execution of sgx_interface_foo function, the
control flow will return back to line 9.

As previously mentioned, we place this instruction sequence at
the beginning of foo by editing the leading bytes of its function
body. Our deliberately selected instructions are indeed very concise
(only 28 bytes), hence any non-trivial function shall provide enough
space to be rewritten with such trampoline.

4.2 Assembly Function Analysis

For each target function, we perform an intra-procedural analysis
to recover high-level program information. The recovered informa-
tion is critical for preserving functionality correctness, supporting
SGX enclave access control, as well as further instrumentation and
retrofitting.

Function Prototype Recovery One attractive feature provided by
SGX SDK is “access control”. In particular, for a function call which
has parameters of pointer types, users can annotate these pointer
parameters and Intel SDK would generate additional routines for
pointer legitimacy checks. A number of pointer properties (e.g.,
length of the pointed memory region) are checked before entering
enclave functions.

While it is straightforward to annotate sensitive parameters of
pointer types for programs written in C, there is no type informa-
tion available in the assembly code. To benefit from the validation
checking routines for pointer parameters, we first recover type
information on the target assembly functions, and hence revealing
the function prototype information. Function parameters of pointer
type can be configured to enable the checking process.
Relocation Information Recovery We recover program reloca-
tion symbols for each target function. In particular, we identify
addresses for intra-procedural control transfers, code pointers as
well as global data pointers. Such concrete addresses (i.e., absolute
or relative addresses) are recognized through an existing reverse
engineering tool [30]. For addresses of control transfer destinations,
we lift them into relocatable symbols to support arbitrary code ma-
nipulation. On the other hand, we keep global data pointers in its
original concrete value format, since after in-place binary editing,
global data sections would be loaded in their original locations.

Inter-procedural control flow transfers (i.e., function calls) can
be performed directly or indirectly. For direct function calls, control
flow destinations can be recognized from the operand of the call
instruction. As for the indirect function call which takes a code
pointer as its destination, we identify code pointers embedded in
the instructions. All of these control flow destinations are collected
to build OCALL procedures (details are given shortly).

While recent work on recovering program relocation informa-
tion has reported promising results, still, this problem is in general
undecidable and unrecognized pointers may still exist when an-
alyzing real-world complex programs. Hence, we further design
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1 exception_exit:

2 mov %gs:0x0 ,%rax

3 mov %rax,%rbx

4 call update_ocall_lastsp
5 0x20 (%rbx) ,%rdx

6 0x98 (%rdx) ,%rbp

7 0x90 (%rdx) ,%rsp

8 $target_addr ,%rbx
$EEXIT, %rax

10 enclu

Figure 3: Code snippet of exception_exit procedure.

the exception handling techniques to deliver a faithful execution
during runtime (§4.3).

OCALL Trampoline As aforementioned, we analyze the assembly
code of the target function and collect its inter-procedural control
transfer destinations. SGX specifies that code inside an enclave
needs to use OCALL routines to call functions in the untrusted part.
Hence, these collected callee addresses are candidates for OCALL
transformations and we create one OCALL routine for each control
transfer. We rewrite the destination of such control transfer in-
structions to point to one corresponding OCALL routine code. The
execution flow will be further forwarded to the untrusted world,
where library or application functions are invoked.

Our instrumentation is conceptually similar to the “replica-based”
instrumentation in terms of the organization of the instrumented
components. That is, function call can eventually reach to the callee
even if the callee function has been relocated inside an enclave, since
its trampoline code in the instrumented binary would faithfully
redirect the execution flow. On the other hand, considering the
relatively high performance cost of inter-enclave control transfers,
we perform optimizations at this step if both the caller and callee of
a function call are in the same enclave; OCALL trampoline is omitted
and caller destination is rewritten with callee’s new address in the
enclave.

4.3 Exception Handling

In this section we propose exception handling mechanisms to solve
potential runtime exceptions (e.g., pointer dereference error). When
such an exception occurs, the processor performs an AEX before
invoking the system software’s exception handler. The AEX saves
the enclave state in the enclave’s State Save Area (SSA) frame. The
EXITINFO in the SSA frame contains the information used to report
exit reasons to software inside the enclave. According to the SGX
manual [1], a segmentation fault exception is not reported inside
an enclave in the current implementation of SGX. As a result, the
VALID bit of EXITINFO is not set. In order to support the recovery
from runtime exceptions, we removed the examination of the VALID
bit in the trts_handle_exception function (file trts_veh.cpp)
to enable exception handling inside an enclave in our proof-of-
concept implementation.

To perform a successful transition from the enclave state to the
application state, the application stack pointers RBP and RSP need
to be restored. Furthermore, the target address outside the enclave
needs to be retrieved from the saved region and EEXIT leaf function
needs to be executed to perform a synchronous exit. According to
the SGX manual [1], upon an interrupt or exception the applica-
tion’s RBP and RSP are saved in the GPRSGX region of the current
thread’s SSA frame. We register our exception handler inside the
enclave which is first invoked after the exceptions. The exception
handler sets the RIP to a dedicated exception_exit procedure
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(Figure 3). The exception_exit procedure restores the applica-
tion stack by calling update_ocall_lastsp and then executes the
EEXIT leaf function to exit the enclave. It also retrieves the target
address! and puts the address to RBX before the EEXIT leaf function,
so that the execution branches to the target address after enclave
exits.

For each call from the enclave to the application that raises
an exception, the exception handling process involves three transi-
tions between enclave state and application state. Extra time is also
spent on the processing inside the system software. As a result, the
exception handling approach takes more time than the trampoline
code based approach. However we believe the runtime exceptions
are rare cases, and we propose possible methods which we leave
as future work to reduce the overhead. Firstly, the runtime excep-
tion frequency could be reduced if we could update the pointer
dereference information dynamically during runtime. Secondly, In-
tel Transactional Synchronization Extensions (TSX) could be used
to transfer control to the enclave address specified in the XBEGIN
instruction before trapping to the system software once runtime
exceptions occur inside the enclave. Another side effect of the cur-
rent exception handling mechanism is that it allows jumping to
arbitrary code outside the enclave from within the enclave.

5 IMPLEMENTATION

We extend an existing open source binary reverse engineering
platform (Uroboros [30, 31]) with the SGX instrumentation func-
tionality described in this paper. Our prototype is implemented in
Scala, with over 1,700 LOC. Our extension components perform the
aforementioned instrumentation steps (§4), and also employ the
core functionality of Uroboros to identify program relocation sym-
bols (e.g., code pointers, global data pointers). The proof-of-concept
implementation of the exception handling mechanism adds 56 lines
of C code.

We leverage hexedit to edit the hex representation of the input
binary code [21]. Also, although (stripped) binaries are lack of
function information, existing research has presented promising
results in this direction [3]. Hence as aforementioned, we assume
the function information is available in this research. In addition,
although “type” information is absent in disassembled outputs, there
has been a lot of existing research and industrial tools performing
type inference towards assembly code [7]. Without reinventing the
wheel, we acquire the function prototype information (regarding
the number of function arguments and whether an argument is
pointer type or not) from the industrial strength reverse engineering
tool IDA-Pro [12].

Symbol addresses in the SGX interface libraries need to be known
during binary instrumentation (§4.1), which is contradict to the
randomization agreement provided by ASLR. In our prototype im-
plementation, we disable ASLR to fix the addresses of exported
symbols in the interface libraries. Nevertheless, loading time instru-
mentation can be used to acquire those addresses without breaking
the security guarantee of ASLR. We leave it as one future work to
intercept the loading process and instrument application binaries
with the runtime memory addresses of invoked functions in the
interface libraries.

I The target address is obtained by subtracting the enclave base address from the RIP
saved in the SSA.
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Table 1: Functions placed in the SGX enclave for two perfor-
mance evaluations. Function enc and dec are written by us
to iteratively invoke the block-level processing code, while
the other three are implemented in the OpenSSL library.

Functions
AES_decrypt, AES_encrypt, AES_ecb_encrypt, enc, dec
AES_decrypt, AES_encrypt

Evaluation One
Evaluation Two

6 PRELIMINARY RESULTS

In this section we present the evaluations of this research. Our
preliminary evaluation mainly focuses on understanding the feasi-
bility and cost of the instrumentation products. All the experiments
are launched on a machine with 3.40GHz i7-6700 CPU and 16GB
memory. This machine is SGX enabled, with 64MB SGX enclave
reserved memory. The operating system is 64-bit Ubuntu 16.04. The
SGX interface and enclave instance libraries are all compiled by
Intel SGX SDK with the pre-release mode (optimization -02).

With the growing need to secure cryptosystems using SGX tech-
niques [9], our preliminary evaluation instruments sensitive pro-
cedures provided by cryptographic libraries. In this research, we
adopt the AES encryption and decryption procedures for evaluation.
We wrote a sample code to perform AES encryption and decryption
tasks. The AES implementation is from a commonly-used cryp-
tosystem, OpenSSL (version 0.9.7c), and the key length is set as 256.
We use the AES electronic codebook (ECB) mode to process the
data. This mode divides the input data into fixed-length blocks, and
perform encryption (decryption) towards each block, separately.
As a result, the underlying data block processing code would be
invoked for multiple times, depending on the length of the input
data.

6.1 Performance Penalty Evaluation

In general, two major factors would contribute to the performance
penalty of the SGX protected code: 1) execution slowdown of code
components inside enclaves; 2) inter-enclave control flow trans-
fers, e.g., enclave ECALL. To get a comprehensive understanding of
the performance cost, we launched two evaluations to study both
factors, respectively.

To measure the performance cost of the first factor, we put all
the encryption and decryption functions into an enclave (referred
as Evaluation One later in the paper). Data pointers on the secret
key and input data blocks are passed in through the interface func-
tion. Hence, all the block-level encryption and decryption tasks are
processed within an enclave. The second row of Table 1 presents
the roster of functions in the enclave.

Moreover, by putting only the block-level encryption (decryp-
tion) functions into the enclave and changing the length of the
input, we are able to control the number of inter-enclave control
transfers, thus revealing how the inter-enclave transfers affect the
overall execution slowdown (referred as Evaluation Two). Note
that while enclave creations can cause even higher performance
penalty, in our case they are only executed for once. That means,
major performance penalty would come from the repeated SGX
ECALLs, also the inserted trampoline code (§4). The third row of
Table 1 shows two functions used for this evaluation.

Figure 4 presents the performance evaluation; we increase the
number of processed data blocks, and record the execution CPU
time. Besides two evaluations introduced before, we also present
the performance data of the original input (the “Baseline” case).
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Figure 4: Performance evaluation of AES sample code. For
evaluation two, processing of one data block (for encryption
and decryption) leads to two SGX ECALLs.

For all evaluations, the overall processing time increase is roughly
linear regarding the number of processed data blocks. We report
that on average the instrumented binaries in Evaluation One are
23.7% slower than the baseline case. Note that such comparison
indeed includes the processing time of enclave initialization rou-
tines, which should not change with the growing of the processed
data blocks. Actually when processing over 100k data blocks (i.e.,
around 1.52M data), we report the normalized average overhead is
6.91%.

The second evaluation brings in notable execution slowdown.
We report that on average the instrumented binary in this evalua-
tion becomes 4.12 times slower than the baseline. We interpret the
results are reasonable; frequent inter-enclave control transfers are
major factors of the execution cost.

6.2 Size Increase Evaluation

Besides performance cost, SGX-based instrumentation would also
bring in size increase of the instrumentation products. In this section
we report the size increase of the launched experiments.

As shown in the motivating example (§4), outputs of our tool
includes multiple components, i.e., the instrumented binary, the
SGX interface libraries and corresponding enclave instance libraries.
Also, SGX runtime environments (provided as multiple shared li-
braries) would also be linked into the process address space. In this
evaluation, we measure the total size of the instrumented binaries
and newly-created libraries by our tool, while ignoring the SGX
standard runtime libraries since the later ones are not produced by
our technique.

Table 2 presents the data for both evaluations. As previously dis-
cussed, our binary editing only performs in-place instrumentation,
and the instrumented binaries would have identical size comparing
with the input. On the other hand, both interface and enclave li-
braries bring in new code pieces of non-trivial size. In Evaluation
One we put five functions into the enclave, and the size of the pro-
duced libraries grows slightly larger than the second evaluation. In
sum, we interpret the size increase due to those libraries are mostly
within a reasonable extent. Actually the enclave instance libraries
are essential components of any SGX-based software protection
(not only binary-related approaches), and we trade some memory
space for flexible code re-use by compiling SGX routine code into
interface libraries.
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Table 2: Size increase of the instrumented outputs. Here we
present the size of the original binary (second column), the
instrumented binary (third column), SGX interface library
(fourth column) and the enclave library (fifth column). The
last column represents the total size of the instrumented
outputs.

Case T
Evaluation One
Evaluation Two

Tnput Bin (KB) | Output Bin (KB) | Interface Libs (KB) | Enclaves (KB) | Output Total (KB)
48 48 16 116 180
12 108 168

48 48

6.3 Processing Time

In this section we report the processing time of our preliminary
evaluations. We report our tool takes 8.53 CPU seconds for the first
evaluation while 9.12 CPU seconds for the second one. Although
IDA-Pro is used to recover the function prototype information, we
do not measure its processing time since it is running in a virtual
machine. Typically IDA-Pro would take seconds to a few minutes
to process real-world executable files, which shall be acceptable
in general. Techniques proposed in our work are mostly efficient;
we use Uroboros to recover the function relocation symbols, and
it is reported that Uroboros takes less than one minute to analyze
large size binary code (e.g., stripped GCC binary with over 3MB
size). While the current processing time evaluation only delivers
preliminary data, our estimation is that the proposed technique
shall take less than 5 minutes for most real-world cases.

7 DISCUSSION

For code snippets running inside enclaves, performance overhead
would mainly come from two aspects: 1) instruction execution
overhead, 2) memory access overhead for data buffers allocated
inside enclaves. Our evaluation in §6.1 has studied the first aspect,
and we omit to evaluate the second factor since existing work has
presented comprehensive study on this. As reported by previous
research [2], random data write would lead to relatively high cost,
especially when the accessed buffer size grows over the L3 cache
size (usually 8MB), and further beyond the SGX EPC size.

Nevertheless, our experimental results (i.e. Evaluation One in
§6.1) show that execution cost brought by SGX becomes negligible
once the accessed data is allocated outside enclave. Hence, we
interpret that while usually we shall need to trade certain efficiency
for data security when designing SGX applications, sensitive code
pieces can be mostly protected with relatively low cost.

8 CONCLUSION

Intel Software Guard Extensions (SGX) provides techniques to ex-
ecute code and data in an isolated environment. In this work, we
have presented techniques for hardening binary components (i.e.,
functions) through SGX enclaves. Our technique can be directly
used to protect legacy binary applications with a small size of TCB.
Our preliminary evaluations on hardening AES encryption and de-
cryption procedures demonstrate the practicability of the proposed
technique.
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