
Techniques	and	Tools	for	
Debloating	Containers

Vaibhav	Rastogi (University	of	Wisconsin-Madison)
Chaitra	Niddodi (University	of	Illinois	at	Urbana	Champaign)
Sibin Mohan	(University	of	Illinois	at	Urbana	Champaign)

Somesh Jha (University	of	Wisconsin-Madison)
Tom	Reps	(University	of	Wisconsin-Madison)
Rakesh	Bobba (Oregon	State	University)

David	Lie	(Univeristy of	Toronto)
Eric	Schulte	(GrammaTech)



Containers	in	a	nutshell

• Pack	resources	and	
configuration	with	
application

• Lightweight	
virtualization	solution

• Shared	OS	kernel
• Portable,	easy	to	use

Increasingly	popular	

November	3,	2017 Debloating	Containers	 2



OS	Bloat
• Today’s	operating	systems	à abundance	of	services/code

• Increases	potential	attack	surfaces	
• Reduces	performance
• Tens	of	millions	of	lines	of	code
• Poor	isolation	of	kernel	&	applications	from	privileged	code
• Once	attacker	has	control	of	OS	à can	abuse	any	application

• All	modules	&	services	
• not	necessary	for	the	specialized/debloatedcontainers

• Our	goal:	Reduce	the	size/complexity	of	operating	systems

3



Main	Thrusts

• Fundamental	Techniques
• Executable	slicing
• Partial	Evaluation
• Dynamic+Static Analyses
• Symbolic	Analysis
• ….

• Applications
• Application	specialization
• De-bloating	containers
• Kernel	specialization

November	3,	2017 Debloating	Containers	 4



Partial	Evaluation	and	
Execution	Slicing	for	
Binaries

November	3,	2017 Debloating	Containers	 5



Partial	Evaluation

• Framework	for	
specializing	and	
optimizing
programs

• power (x,	y	=	1,	n	=	2)	
=	 powery	=	1,	n	=	2 (x)

Partial	Evaluator

int power(int x,	int y,	int n)	{
int a	=	1;
while	(n--)	{
a	*=	(x	+	y);
}
return	a;
}

int powery	 =	1,	n	=	2(int x)	{
int a	=	1;
a	*=	(x	+	1);
a	*=	(x	+	1);
return	a;
}

[y	↦ 1,	n	↦ 2]

Residual	
Program

November	3,	2017



Partial	Evaluation	of	Machine	
Code

WiPEr

010000110000100001000
001000101011111101010
111010110001111110000

Binary
001010101011101010101
010101010100010011111
000000111111111111111

10000110000100001000
01000101011111101010

Specialized	Binary
00101010101110101010
10101010101000100111

[y	↦ 1,	n	↦ 2]

November	3,	2017 7



Motivation:	Specializing	binaries

0100010
Square
1011101

0010111101
Decompress
1110010111

Specialize	and	
optimize	w.r.t.	
common	inputs11110101010

10010001010
11111101010

Power
00101010101
11010101010
10010001010

WiPEr

Specialize	and	
extract	executable	

component11110101010
Compress

11111101010

gzip
00101010101
Decompress
10010001010

WiPEr

y	↦ 2

-d

8



Specialization	Slicing:	High-level	
Idea

1) int g1, g2, g3;
2)
3) void p(int a, int b) 

{
4) g1 = a;
5) g2 = b;
6) g3 = g2;
7) }
8)
9) int main() {
10) g2 = 100;
11) p(g2, 2);
12) p(g2, 3);
13) p(4, g1 + g2);
14) printf("%d", g2);
15)}

GOAL
Specialize procedures to 
each combination of 
parameters of call-sites in 
the slice

November	3,	2017 Debloating	Containers	 9



Specialization	Slicing:	High-level	
Idea

1) int g1, g2;
2) void p_1(int b) {
3) g2 = b;
4) }
5) void p_2(int a, int

b) {
6) g1 = a;
7) g2 = b;
8) }
9) int main() {
10)
11) p_1(2);
12) p_2(g2, 3);
13) p_1(g1 + g2);
14) printf("%d", g2);
15)}

GOAL
Specialize procedures to 
each combination of 
parameters of call-sites in 
the slice

November	3,	2017 Debloating	Containers	 10



Executable	Slicing

Binkley	[LOPLAS	1993]
• Include	additional	
actuals	(and	slices)	to	
correct	parameter	
mismatches

• Monovariant result
• Adds	spurious	program	
elements

• “spurious”	=df statement	
or	condition	that	is	not	in	
the	closure	slice	
somewhere

Our	algorithm	[TOPLAS	2014]
• Creates	specialized	callee
for	each	pattern	of	needed	
formal	parameters

• Polyvariant result
• Never	adds	spurious	
program	elements

• Produces	an	optimal
polyvariant result

• “optimal”	=df sound,	
complete,	and	minimal

A	closure	slice	may	not	be	executable	due	to	parameter	mismatches
• At	some	call-sites,	#actuals	in	slice	<	#formals	in	slice
A	specialization	slice	is	executable:	no	parameter	mismatches



The	key	ideas

12

HIGH-LEVEL TAKEAWAY
Generate optimal specialization slices

to retain calling-context info

TECHNICAL TAKEAWAY
• Solve the coarsest-partition problem

on a certain class of infinite graphs
• Use finite-state automata to represent

infinite-size answers symbolically

HIGH-LEVEL TAKEAWAY
Potential exponential explosion (in number
of parameters) is not observed in practice



Container	Images

• Built	layer-upon-layer
• E.g.,	the	MySQL	image	
builds	over	debian:jessie

• Keeps	all	files	from	
debian:jessie even	if	
they	are	not	necessary

• Some	containers	even	
pack	more	than	one	
application	– not	how	
containers	should	work

November	3,	2017 Debloating	Containers	 13



Bloated	Container	Images

• Size:	Containerized	versions	of	even	simple	
applications	come	close	to	or	above	a	GB

Storage	and	network	transfer	costs
• More	files	in	container	=>	more	vulnerabilities
Many	vulnerabilities,	like	Shellshock	and	
ImageTragick,	avoided	simply	by	removing	files.

14



Example:	ImageMagick

ImageMagick

November	3,	2017 Debloating	Containers	 15



Example:	ImageMagick

ImageMagick
• Contains	many	
extraneous	programs	
and	filesbash

curl

wget

November	3,	2017 Debloating	Containers	 16



De-bloating

ImageMagick

• Remove	extraneous	
programs	and	files

• Reduces	impact	of	
vulnerabilities

• Remote	code	execution	
vulnerabilities	of	
ImageTragick rendered	
harmless

bash

curl

wget

November	3,	2017 Debloating	Containers	 17



Issues	with	monolithic	containers

• Multiple	apps	in	a	single	image	->	compromising	
one	app	leads	to	compromising	others

• Separating	each	app	in	its	own	image	significantly	
reduce	the	attack	surface

• When	apps	are	partitioned,	lateral	attacks	become	
significantly	more	difficult!

November	3,	2017 Debloating	Containers	 18



Example:	Mediawiki

• All	components	
together	can	affect	
each	other

HTTPD
MediaWiki

ImageMagick

MySQL	Server

Initial	Configuration
Script

November	3,	2017 Debloating	Containers	 19



Partition

• Isolate	components
• E.g.,	ImageMagick now	
minimally	affects	other	
components

HTTPD
MediaWiki

ImageMagick

MySQL	Server

Initial	Configuration
Script

November	3,	2017 Debloating	Containers	 20



Cimplifier

• A	tool	to	de-bloat	and	partition	containers

• Finds	and	remove	unneeded	resources

• Partition	containers	based	on	user-defined	policy

• Automatically	creates	complying	partitions	that	
function	together	like	the	original	container

November	3,	2017 Debloating	Containers	 21



Architecture

Resource	
Identification

Container	
Partitioning Glue	Insertion

HTTPD
MediaWiki

ImageMagick

MySQL	Server

Initial	Configuration
Script

HTTPD
MediaWiki

ImageMagick

MySQL	Server

Initial	Configuration
Script

Input	Container Output	Containers

Syscall
Logs

User	
Constraints

November	3,	2017 Debloating	Containers	 22



Resource	Identification

• Based	on	dynamic	analysis

• Collect	system	call	logs	from	test	runs	

• Identify	resources	and	operations	performed	on	
them	for	each	thread	of	execution

• Ensures	necessary	resources	are	not	removed

November	3,	2017 Debloating	Containers	 23



Container	Partitioning

• Associate	threads	with	executables
• Form	a	”call	graph”	at	an	executable	level
• Associate	resources	with	executables
• Place	executables	in	different	partitions	according	
to	policy

• Policy	specifies	both	negative	and	positive	
constraints,	identifying	which	executables	must	not	
be	or	should	be	together

November	3,	2017 Debloating	Containers	 24



Evaluation:	Processing	Containers

• Examined	six	one-application	containers	and	3	
multi-application	ones

• Produces	functional,	de-bloated	partitions
• Size	reduction	in	containers	ranged	from	15%	to	
95%	(reduction	>	50%	for	all	but	one	case)

• Given	system	call	logs,	containers	can	be	processed	
with	good	performance,	in	under	30	second	in	our	
tests

November	3,	2017 Debloating	Containers	 25



Container Size	(MB) Analysis	Time	
(s)

Result	Size	
(MB)

Size	Reduction

nginx 133 5.5 6 95%

redis 151 5.5 12 92%

mongo 317 14.0 46 85%

python 119 5.3 30 75%

registry 33 2.9 28 15%

haproxy 137 4.3 10 93%

mediawiki 576 16.8 244 58%

wordpress 602 16.2 207 66%

ELK	stack 985 26.1 251 75%

Evaluation:	Processing	Containers

November	3,	2017 Debloating	Containers	 26



Further	Directions:	new	IR

• Dynamic	analysis	may	
provide	limited	
coverage

• Can	use	other	other	
techniques	such	as	
static	analysis

• A	common	resource	
usage	intermediate	
representation	that	all	
analyses	emit	and	
debloating algorithms	
consume	will	be	useful	

Analysis	1 Analysis	2 Analysis	3

IR

Debloat

Container

Debloated
Container

November	3,	2017 Debloating	Containers	 27



Further	Directions:	Symbolic	
Execution
• Cimplifier’s uses	manually	prepared	test	cases	–
may	have	incomplete	coverage

• Generate	more	test	cases	with	symbolic	execution
• Cover	all	program	paths

• Use	Klee:	an	optimized	concolic execution	engine

November	3,	2017 Debloating	Containers	 28



Further	Directions:	Symbolic	
Execution

• Challenges:	Choosing	variables	that	must	be	symbolic
• Maximize	path	coverage
• Reduce	exponential	path	explosion

• Solution
• Use	control	&	data	dependencies	to	partition	inputs	into	”non-
interfering”	blocks	[Xu	2009]

• Each	block	executed	symbolically	à concretely	avoid	other	blocks
• Provides	same	results	as	symbolic	execution	of	entire	input	set
• If	inputs	cannot	be	partitioned	à use	fuzzing/randomization	
methods	

November	3,	2017 Debloating	Containers	 29



Debloating	OS	Kernel

November	3,	2017 Debloating	Containers	 30



Prior	Work	[OSDI	2006]

Commodity OS VM

VMM

Private VM

Private OS

Commodity OS Kernel

Other
Applications

Proxos

Security-
Sensitive 

Application
Host Process

Private
Application

Sensitive Data

• Proxosà isolation	of	private/privileged	application
• System	calls	to	sensitive	resources	à private	VM
• Application	doesn’t	know	it	is	being	isolated

November	3,	2017 Debloating	Containers	 31



Proxos |	Routing	System	Calls

• System	calls	routed	to	commodity	OS	using	RPC’s:
• Shared	memory	region	between	the	commodity	OS	and	Proxos

• Created	at	Startup

Xen VMM

Commodity OS VMPrivate VM

Private
Application

Proxos
Interrupt 
Handler

Host 
Process

Linux
Kernel

Shared Buffer

ArgsReturn
Value

November	3,	2017 Debloating	Containers	 32



Proxos Example	|	SSH	Server
• Apps	have	access	to	commodity	OS

• But	sensitive	resources	can	be	isolated

• E.g.:	SSH	Server	
• user	passwords,	host	key,	etc.	à private	OS
• All	network	packets	decrypted	in	private	app	before	cmd shell

November	3,	2017 Debloating	Containers	 33

Commodity OS VMPrivate VM
SSH

ServerPrivate OS

Linux Kernel

Host Process

Proxos

Passwords

Host Keys

Command Shell
Network

Encrypt

Pipe



OS/Kernel	De-bloat
• Use	a	combination	of	techniques	developed	from

• Cimplifier
• Proxos
• Other	kernel	reduction	techniques

• Create	specialized	kernels for	reduced	container	apps
• Proxos-C

• Cimplifer debloats containers	into	multiple,	smaller	ones
• Main	application	à isolated	into	one,	“critical”	container
• Other	applications	à other,	potentially	multiple,	containers

November	3,	2017 Debloating	Containers	 34



Proxos-C	|	Debloated Container-
Aware	Proxos

• Developer	annotates	critical	application	with	‘private’	OS	calls	
• Use	Cimplifier-style	analyses	

• to	identify	necessary	kernel	resources
• Package	‘private’	kernel	resources	separately	(as	kernel	modules)

• OS	will	route	calls	from	critical	de-bloated	container	to	this	module
• All	calls	from	other	containers	routed	to	another	module

• rest	of	OS	services

• Initial	step:	manual	process
• We	intend	to	automate	the	following:

• Identifying	the	critical	(container-relevant)	system	calls
• Identifying	kernel	resources	that	must	be	‘private’	and	carving	them	out
November	3,	2017 Debloating	Containers	 35



Proxos-C	[contd.]
• In	this	model,

• Our	(potentially	debloated)	application	container	à private	
application	in	Proxos

• Hence,	all	system	calls	from	critical	container	à ‘private’

• Our	solution:	Use	combinations	of	static	and	dynamic	analyses
• To	identify	required	kernel	resources	for	this	critical	container
• compile-time	analysis,	symbolic	execution,	runtime	monitoring,	etc.	
• Challenge:	identifying	arguments	of	system	calls

• Package	the	identified	system	calls	separately
• Calls	to	other	resources,	if	needed,	will	re-routed	by	OS/hypervisor

November	3,	2017 Debloating	Containers	 36



Future	|	Kernel	
Reduction/Specialization
• Beyond	Proxos-C

• Look	for	kernel	reduction	techniques	that	gets	rid	of	
unnecessary	services

• Specialize	the	OS	for	the	containers
• Currently	studying	other	methods	that	can	reduce	
kernel	bloat

• Call	graph	analysis
• kprobes/ftrace
• Code	rewriting
• Unikernels
• Micro	hypervisors

November	3,	2017 Debloating	Containers	 37



End-to-End	System

Container

Cimplifier

Machine	Code	
Specialization/
Exec	Slicing		

tools

“Cimplified”	
Containers

Reduced		
Containers	(CAF)

Commodity	OS

Ca
pt
ur
e

Ne
ce
ss
ar
y	

Sy
st
em

	C
al
ls

Further	System
Call	Info

Necessary	Kernel	
Services	required	
by	Container

Other	Kernel
Services

Necessary	Kernel	
Services	required	
by	Reduced	Containers

Other	Kernel
Services

Reduced	
Applications
+	Kernels

Interface	to	
other	Kernel
Services

November	3,	2017 Debloating	Containers	 38



Backup

November	3,	2017 Debloating	Containers	 39



Glue	Insertion:
Remote	Process	Execution

• Partitions	must	interact	
to	perform	the	original	
function

• We	automatically	
transfer	execution	of	a	
process	from	one	
container	to	another

• Low	overhead
• Uses	the	fact	that	
containers	run	on	
shared	kernel

November	3,	2017 Debloating	Containers	 40



Glue	Insertion:
Remote	Process	Execution	- II

• Suppose	MediaWiki needs	to	execute	ImageMagick
• …but	ImageMagick has	been	moved	to	a	different	
container

• Our	approach	generates	a	stub	for	ImageMagick
which	connects	to	the	RPE	server	in	the	ImageMagick
container

• RPE	works	transparently	to	the	applications	– no	
application	modifications	required

November	3,	2017 Debloating	Containers	 41



Evaluation:	Runtime	Overhead

• Containers	run	original	code,	so	no	overhead
• Only	overhead	is	due	to	glue	insertion
• Running	time	overhead	per-execution	is	1-4	ms,	
easily	amortized	over	application	runs

• Memory	overhead	is	about	1	MB	per	partition

November	3,	2017 Debloating	Containers	 42


