Techniques and Tools for
Debloating Containers

Vaibhav Rastogi (University of Wisconsin-Madison)
Chaitra Niddodi (University of lllinois at Urbana Champaign)
Sibin Mohan (University of lllinois at Urbana Champaign)
Somesh Jha (University of Wisconsin-Madison)

Tom Reps (University of Wisconsin-Madison)

Rakesh Bobba (Oregon State University)

David Lie (Univeristy of Toronto)

Eric Schulte (GrammaTech)

Containers in a nutshell

e Pack resources and kubernetes
configuration with
application

* Lightweight
virtualization solution

* Shared OS kernel dOC er

* Portable, easy to use

y

Increasingly popular

Core OS5

November 3, 2017 Debloating Containers 2

OS Bloat

* Today’s operating systems = abundance of services/code
* Increases potentighattacksurfr¢8&% rnel version

Reduces performaﬁ@éand drag in the plot area to zoom in

Tenszsgf millions of lines of code

Poori$olation of kernel & applications from privileged code

Orice attacker has control of OS > can abuse any application

es o

< 10M

* All modules & services

* notnecessary for the specialized/debloated containers

* Our goal: Reduce the size/complexity of operating systems

WP R8O RP P 2% 10 o8 W ak D S b D a2 D AP D DD I o>
\"’) '\/’) 1’ 1 /L'\, Vv fL’) Vv 1 g e 7y 0 2y %¢ 2y ')A’)"\, A’)"\, e 5

Version

Lines of Code

Main Thrusts

* Fundamental Techniques
e Executable slicing

Partial Evaluation

Dynamic+Static Analyses

Symbolic Analysis

e Applications
* Applicationspecialization
* De-bloating containers
* Kernel specialization

Partial Evaluation and
Execution Slicing for
Binaries

Partial Evaluation

--
3 3

* Framework for
specializing and

optimizing
programs

- [power]|(x, y = 1, n = 2) Partial Evaluator
= [power, .1 n->] (x) -

Residual
Program

November 3, 2017

Partial Evaluation of Machine
Code

010000110000100001000
001000101011111101010
111010110001111110000
Binary
001010101011101010101
010101010100010011111
000000111111111111111 [y~ 1,ne 2]

U U

{

10000110000100001000
01000101011111101010
Specialized Binary
00101010101110101010
10101010101000100111

Motivation: Specializing binaries

Specialize and
optimize w.r.t.

11110101010 common inputs

10010001010 AR
WiPEr 3

0100010
Square

L)

11111101010

Power
00101010101
11010101010
10010001010

Specialize and
extract executable
component

11110101010
Compress -d

11111101010 0010111101

WiPEr [Jlvecompress
1110010111

gzZip
00101010101
Decompress

10010001010

Specialization Slicing: High-level
ldea

1) int gl, g2, g3;

2)

3) void p(int a, 1int b)
{

GOAL 9 i
o g2 = b;
Specialize procedures to g3 = g2;

each combination of
parameters of call-sites in
the slice

p(4, gl + g2);
printf ("%d", g2);

el el el =l S Vo N0 SN o) W@ TN
— "

November 3, 2017 Debloating Containers

Specialization Slicing: High-level

ldea

GOAL
Specialize procedures to

each combination of
parameters of call-sites in
the slice

November 3, 2017

1) int gl, g2;
2) void p 1(int b) {

3) g2 = b;

4) }

5) void p 2(int a, int
b) {

6) gl = a;

7) g2 = b;

8) }

9) int main () {

10)

11) p 1(2);

12) p_2(g2, 3);

13) p 1(gl + g2);

14) printf("%d", g2);

Debloating Containers

10

Executable Slicing

A closure slice may not be executable due to parameter mismatches
* At some call-sites, #actualsin slice < #formalsin slice
A specialization slice is executable: no parameter mismatches

Binkley [LOPLAS 1993]

Our algorithm [TOPLAS 2014]

* Include additional
actuals (and slices) to
correct parameter
mismatches

* Monovariant result

* Adds spurious program
elements

* “spurious” =4 statement
or conditionthatis notin
the closure slice
somewhere

* Creates specialized callee
for each pattern of needed
formal parameters

* Polyvariant result

* Never adds spurious
program elements

* Produces an optimal
polyvariant result

|”

* “optimal” =4 sound,
complete, and minimal

The key ideas

HIGH-LEVEL TAKEAWAY

Generate optimal specialization slices
to retain calling-context info

HIGH-LEVEL TAKEAWAY

Potential exponential explosion (in number
of parameters) is not observed in practice

TECHNICAL TAKEAWAY
Solve the coarsest-partition problem
on a certain class of infinite graphs
Use finite-state automata to represent
infinite-size answers symbolically

12

Container Images

* Built layer-upon-layer ~ FROM debian:jessie

* E.g., the MySQL image

add our user and group firs
builds over debian:jessie "UN groupadd —r mysql && user

» Keeps all files from
debian:jessie even if
they are not necessary

add gosu for easy step—-down
ENV GOSU_VERSION 1.7

RUN set —-x \

* Some containers even && apt-get update &&
pack more than one && wget -0 /usr/local
application — not how && wget -0 /usr/local
containers should work && export GNUPGHOME="

November 3, 2017 Debloating Containers 1 3

Bloated Container Images

* Size: Containerized versions of even simple
applications come close to or above a GB
mmm) Storage and network transfer costs

* More files in container => more vulnerabilities
Many vulnerabilities, like Shellshock and
ImageTragick, avoided simply by removing files.

14

Example: ImageMagick

ImageMagick

November 3, 2017 Debloating Containers

15

Example: ImageMagick

curl

* Contains many

TR extraneous programs
h .
e e and files
November 3, 2017 Debloating Containers

16

De-bloating

eurl

ImageMagick
wget

bash

November 3, 2017

* Remove extraneous
programs and files

e Reduces impact of
vulnerabilities

 Remote code execution
vulnerabilities of
ImageTragick rendered
harmless

Debloating Containers

17

Issues with monolithic containers

* Multiple apps in a single image -> compromising
one app leads to compromising others

e Separating each app in its own image significantly
reduce the attack surface

* When apps are partitioned, lateral attacks become
significantly more difficult!

Example: Mediawiki

HTTPD
MediaWiki

ImageMagick

MySQL Server

Initial Configuration
Script

November 3, 2017

* All components
together can affect
each other

Debloating Containers

19

Partition

HTTPD
MediaWiki

ImageMagick

MySQL Server

Initial Configuration

Script

November 3, 2017

* |solate components

* E.g., ImageMagick now
minimally affects other
components

Debloating Containers

20

Cimplifier

* A tool to de-bloat and partition containers

* Finds and remove unneeded resources

* Partition containers based on user-defined policy

* Automatically creates complying partitions that
function together like the original container

Architecture

Syscall
Logs

HTTPD
MediaWiki

Resource
|dentification

ImageMagick
MySQL Server

Initial Configuration
Script

Input Container

November 3, 2017

User

Constraints

Container
Partitioning

Debloating Containers

ad Glue Insertion

HTTPD
MediaWiki

ImageMagick
—> 8! g

MySQL Server
Initial Configuration
Script

Output Containers

22

Resource Identification

* Based on dynamic analysis
* Collect system call logs from test runs

* |dentify resources and operations performed on
them for each thread of execution

* Ensures necessary resources are not removed

Container Partitioning

e Associate threads with executables
* Form a “call graph” at an executable level
* Associate resources with executables

* Place executables in different partitions according
to policy

* Policy specifies both negative and positive
constraints, identifying which executables must not
be or should be together

Evaluation: Processing Containers

* Examined six one-application containers and 3
multi-application ones

* Produces functional, de-bloated partitions

* Size reduction in containers ranged from 15% to
95% (reduction > 50% for all but one case)

* Given system call logs, containers can be processed
with good performance, in under 30 second in our

tests

Evaluation: Processing Containers

Container Analysis Time | Result Size Size Reduction
(S) (MB)

nginx 95%
redis 151 5.5 12 92%
mongo 317 14.0 46 85%
python 119 5.3 30 75%
registry 33 2.9 28 15%
haproxy 137 4.3 10 93%
mediawiki 576 16.8 244 58%
wordpress 602 16.2 207 66%
ELK stack 985 26.1 251 75%

November 3, 2017 Debloating Containers

Further Directions: new IR

* Dynamic analysis may / /
provide limited
coverage !
* Can use other other m
techniques such as
static analysis

* A common resource “
usage intermediate
representation that all
analyses emit and
debloating algorithms
consume will be useful / /

November 3, 2017 Debloating Containers

Further Directions: Symbolic
Execution

* Cimplifier's uses manually prepared test cases —
may have incomplete coverage

* Generate more test cases with symbolic execution
e Cover all program paths

* Use Klee: an optimized concolic execution engine

Further Directions: Symbolic
Execution

* Challenges: Choosing variables that must be symbolic
* Maximize path coverage
* Reduce exponential path explosion

e Solution

* Use control & data dependenciesto partition inputsinto “non-
interfering” blocks [Xu 2009]

* Each block executed symbolically 2 concretely avoid other blocks
* Provides same results as symbolicexecution of entire input set

* If inputs cannot be partitioned =2 use fuzzing/randomization
methods

Debloating OS Kernel

Prior Work [OSDI 2006}

* Proxos —2 isolation of private/privileged application
 System calls to sensitive resources = private VM

* Application doesn’t know it is being isolated

Private VM Commodity OS VM
. Security- Other
Private OS Prl.vat.e Sensitive Applications
Application N
Sensitive Data Application
Host Processll-a..
L

g Y
4@ Commodity OS Kernel

VMM

Proxos | Routing System Calls

e System calls routed to commodity OS using RPC’s:

 Shared memory region between the commodity OS and Proxos
* Created at Startup

Private VM Commodity OS VM

Private
Application

Shared Buffer

— Linux
Return
Vala Kernel

Xen VMM

Proxos Example | SSH Server

* Apps have access to commodity OS
 But sensitive resources can be isolated

* E.g.: SSH Server

* user passwords, host key, etc. = private OS
* All network packets decrypted in private app before cmd shell

Private VM Commodity OS VM

Private 0S| | SSH Pipe ECommand Shell
Server Network
Passwords

Encrypt
L Host Process!~.,
*

)
|

. J
Linux Kernef’b m'w

Host Keys

OS/Kernel De-bloat

* Use a combination of techniques developed from
e Cimplifier
* Proxos
* Other kernel reduction techniques

* Create specialized kernels for reduced container apps
* Proxos-C

* Cimplifer debloats containersinto multiple, smaller ones
* Main application = isolated into one, “critical” container
* Other applications = other, potentially multiple, containers

Proxos-C | Debloated Container-
Aware Proxos

* Developer annotates critical application with ‘private’ OS calls

e Use Cimplifier-style analyses
* to identify necessary kernel resources

* Package ‘private’ kernel resources separately (as kernel modules)
* OS will route calls from critical de-bloated container to this module

e All calls from other containersrouted to another module
e rest of OS services

* |nitial step: manual process

* We intend to automate the following:
 |dentifyingthe critical (container-relevant) system calls
* |ldentifyingkernel resources that must be ‘private’ and carving them out

Proxos-C [contd.]

* In this model,

* Our (potentially debloated) application container = private
applicationin Proxos

* Hence, all system calls from critical container = ‘private’

e Our solution: Use combinations of static and dynamic analyses
* To identify required kernel resources for this critical container
 compile-time analysis, symbolicexecution, runtime monitoring, etc.

* Challenge:identifying arguments of system calls

* Package the identified system calls separately
 Calls to other resources, if needed, will re-routed by OS/hypervisor

Future | Kernel
Reduction/Specialization

* Beyond Proxos-C

* Look for kernel reduction techniques that gets rid of
unnecessary services

» Specialize the OS for the containers

* Currently studying other methods that can reduce
kernel bloat
e Call graph analysis
kprobes/ftrace
Code rewriting
Unikernels
Micro hypervisors

Capture

Necessary

End-to-End System

Necessary Kernel
Services required

by Container

Commodity OS »
Further System f
Call Info

].} ampiver EE

System Calls

Container “Cimplified”

November 3, 2017

Other Kernel
Services

Necessary Kernel
Services required

by Reduced Containers

8 @~

I_;

Y

Containers

Machine Code
Specialization/

I 4
e »
Exec Slicing

tools

Debloating Containers

| —
m) oo
J

Reduced

Containers (CAg) J

Interface to
other Kernel

Services

Reduced
Applications
+ Kernels

Other Kernel
Services

38

Backup

Glue Insertion:
Remote Process Execution

e Partitions must interact
to perform the original

function 1 Ci S C,
fork —@pm———
. €
* We automatically xocre 4
transfer execution of a i O n—
process fromone o

container to another

 Low overhead

e Uses the fact that
containers run on

exit code

shared kernel

Glue Insertion:
Remote Process Execution - ||

* Suppose MediaWiki needs to execute ImageMagick

e ...but ImageMagick has been moved to a different
container

* OQur approach generates a stub for ImageMagick
which connects to the RPE server in the ImageMagick
container

* RPE works transparently to the applications — no
application modifications required

Evaluation: Runtime Overhead

e Containers run original code, so no overhead
* Only overheadis due to glue insertion

* Running time overhead per-execution is 1-4 ms,
easily amortized over application runs

* Memory overhead is about 1 MB per partition

