
A Multi-OS Cross-Layer Study of Bloating in User
Programs,

Kernel and Managed Execution Environments

Anh Quach, Rukayat Erinfolami,

David Demicco, Aravind Prakash

Code Bloating in Software Stack

● Bloating: unused resource in

memory

○ Management cost

○ Vulnerabilities

○ Gadget source

● Modular and abstraction

● Occurs across layers

User-level programs

Managed Execution
Engines

Kernel

Hardware

Bloat in User-level Programs

1. Bad coding practice

○ Make copies of code for convenience

○ Feature Creep

2. Inherit bloat from generic libraries

Bloat in User-level Programs

● Bad coding practice --- redundant copies of code, unnecessary inlining, etc.

● Feature-rich generic libraries (e.g., libc, BOOST, FFMpeg)

● Static Approach --- What is the minimum amount of bloat in the program?

○ Recursive dependency analysis

○ Include address-taken functions for indirect code references

● Dynamic Approach --- How much code executes for an average workload?

○ Dynamic analysis in a controlled execution monitor (Pin for user programs and

QEMU for kernel)

Lower Bound Bloat Results (Using Static Analysis)

Program

% Library
Instructions

Required

% Overall
Instructions

Required

% Library
Functions
Required

% Overall
Functions
Required

firefox 67.20% 68.37% 36.42% 38.60%
chrome 69.72% 95.67% 33.57% 36.75%

webbrowser-app 58.86% 59.03% 29.34% 30.22%
vlc 78.22% 78.25% 42.44% 42.79%
rhythmbox 77.92% 77.92% 29.83% 29.83%
evince 70.84% 71.34% 33.61% 36.19%
sublime 68.88% 84.95% 39.13% 41.42%
gnome-calculator 68.59% 69.21% 34.02% 36.18%
git 62.70% 78.11% 22.75% 29.11%
clang 53.99% 73.91% 34.32% 56.83%
g++ 52.36% 64.37% 23.90% 29.58%
make 52.13% 56.06% 23.11% 27.75%
Average 65.12% 73.10% 31.87% 36.27%

Lower Bound Bloat Results (using static analysis)

65% Library Code

Firefox, google chrome, webbrowser-app, vlc, rhythmbox, evince,
sublime, calculator, git, clang, gcc, make

65% Library Code

User-level Programs Average Bloat Results

Program Workload

% Instructions
Executed in

Libraries

% Overall
Instructions

Executed

% Functions
Executed in

Libraries

Unique
Syscalls (out of

402)
firefox Open top 10 websites in Alexa’s list 28.66% 28.70% 17.04% 101

webbrowser-app
Open google.com and youtube.com.
Play a video on youtube.com. 12.70% 12.76% 15.28% 93

vlc Play 1 song 12.44% 12.44% 10.54% 80

libreoffice
Create, write and save a new word
file. 23.41% 23.41% 16.03% 86

sublime
Create, write and save a new word
file. 26.66% 38.12% 16.85% 67

gnome-calculato
r Add and subtract numbers. 35.18% 36.25% 21.35% 59
git Clone a respository 12.61% 11.78% 6.71% 47
clang++ Compile a C++ program 6.63% 10.32% 8.62% 23
g++ Compile a C++ program 4.52% 17.57% 2.53% 17
make Run make on a C++ project. 11.97% 18.20% 6.22% 26

Average 17.48% 20.96% 12.12% 59.9

Measuring Bloat in Kernel

● Linux kernel: “bloated and huge”*,

monolithic

● Measuring kernel bloat is hard!

[DECAF, TSE’16]

● Light-weight Qemu-based kernel

tracer

○ Intercept translation state

○ No need to acquire CPU state

* Torvalds, Linus. LinuxCon, 2009

https://en.wikipedia.org/wiki/Linus_Torvalds

Kernel Bloat during Boot Process

Operating
System

Code
Executed
During Boot
(Bytes)

Kernel Size
(Bytes)

% Kernel
Code
Executed
During Boot

Debian 3.2.51-1 2192166 7494595 29.25%

kFreeBSD
Wheezy

2445095 10556370 23.16%

Windows 8.1 1112279 2691056 41.33%

Average 1916513 6914007 31.25%

Bloating in Kernel Results

System Call
Kernel Code Executed (B) % Kernel Code Executed

kFreeBSD Debian kFreeBSD Debian
exit 941961 778361 8.92% 7.89%

exit_group
Not

Supported 462053
Not

Supported 4.68%
open+close 1076732 964614 10.20% 9.78%
getuid 792612 575879 7.51% 5.84%
execve 1453331 1388650 13.77% 14.07%
getcwd 681763 903860 6.46% 9.16%
write 792519 713358 7.51% 7.23%
getpid 670177 533857 6.35% 5.41%
Average 915585 836939.9 8.67% 8.48%

Bloating in Managed Execution Engines

● Designed to support all features.

● Managed programs may use some features

● Dynamic approach: code executed for a typical workload

Bloating in JVM

Program Workload
Modules in
JVM

% Instructions
Executed

% Functions
Executed

Eclipse

Created a java
program,
compiled and
executed it.

6 10.50% 25.13%

8 33.65% 35.45%

Jabref
Created a
bibliography file 13 31.88% 30.42%

Jenkins

Installed plugins,
created an admin
user, and created
a pipeline 12 34.51% 32.39%

Average 10 27.63% 30.85%

Bloating in Python Interpreter

Program Workload
Modules in
python

% Instructions
Executed

% Functions
Executed

Calibre
Opened and
read a book

34 6.75% 4.97%

34 7.08% 7.66%

Mercurial
Cloned a
repository

4 39.76% 69.23%

6 40.84% 44.44%

Pip
Installed a
program

11 14.52% 60.49%

11 9.21% 60.49%

Ubuntu
software center

Installed and
removed a
program

2 11.33% 53.85%

16 32.75% 14.32%

17 44.88% 30.07%

Gramps
Created a
family tree 8 54.25% 36.67%

Average 14.3 26.14% 38.22%

Debloating Approaches and Challenges

● Partition problem space into Binary and Source code
○ Wide use of opensource libraries.

● Threat model --- BYOD scenario vs Adversary

● Challenges for code removal:
○ Semantic gap across layers, Code sharing, Context sensitive approach

Debloating Approaches and Challenges

● Near-zero runtime overhead
● Analysis precision
● Dynamic dependencies
● Shared code

Static
Analysis

● Context-sensitive
● Runtime overhead
● Dynamic dependencies

Program
Dependency

Late-stage Debloating

Dynamic Debloating

Questions

