A Multi-OS Cross-Layer Study of Bloating in User
Programs,
Kernel and Managed Execution Environments

Anh Quach, Rukayat Erinfolami,

BINGHAMTON

LULNIVERSITY
STATE UNIVERSITY OF NEW YORK

David Demicco, Aravind Prakash




Code Bloating in Software Stack

Bloating: unused resource in

memory

o Management cost
o Vulnerabilities

o Gadget source

Modular and abstraction

Occurs across layers

User-level programs

Managed Execution
Engines

Kernel

Hardware



Bloat in User-level Programs

1. Bad coding practice

o Make copies of code for convenience

o Feature Creep

2. Inherit bloat from generic libraries



Bloat in User-level Programs

Bad coding practice --- redundant copies of code, unnecessary inlining, etc.
Feature-rich generic libraries (e.g., libc, BOOST, FFMpegq)

Static Approach --- What is the minimum amount of bloat in the program?
o Recursive dependency analysis
o Include address-taken functions for indirect code references

Dynamic Approach --- How much code executes for an average workload?

o Dynamic analysis in a controlled execution monitor (Pin for user programs and
QEMU for kernel)



Lower Bound Bloat Results (Using Static Analysis)

% Library % Overall % Library % Overall
Instructions Instructions Functions Functions
Program Required Required Required Required
firefox 67.20% 68.37% 36.42% 38.60%

chrome 69.72% 95.67% 33.57% 36.75%

webbrowser-app 58.86% 59.03% 29.34% 30.22%
vic 78.22% 78.25% 42.44% 42.79%
rhythmbox 77.92% 77.92% 29.83% 29.83%
evince 70.84% 71.34% 33.61% 36.19%
sublime 68.88% 84.95% 39.13% 41.42%
gnome-calculator 68.59% 69.21% 34.02% 36.18%
git 62.70% 78.11% 22.75% 29.11%
clang 53.99% 73.91% 34.32% 56.83%
g++ 52.36% 64.37% 23.90% 29.58%
make 52.13% 56.06% 23.11% 27.75%
Average 65.12% 73.10% 31.87% 36.27%




Lower Bound Bloat Results (using static analysis)

65% Library Code

65% Library Code

Firefox, google chrome, webbrowser-app, vic, rhythmbox, evince,
sublime, calculator, git, clang, gcc, make



User-level Programs Average Bloat Results

Workload

% Instructions
Executed in
Libraries

% Overall
Instructions
Executed

% Functions
Executed in
Libraries

# Unique
Syscalls (out of
402)

Open top 10 websites in Alexa’s list

28.66%

28.70%

17.04%

101

webbrowser-app

Open google.com and youtube.com.

Play a video on youtube.com.

12.70%

12.76%

15.28%

vic

Play 1 song

12.44%

12.44%

10.54%

libreoffice

Create, write and save a new word
file.

23.41%

23.41%

16.03%

sublime

Create, write and save a new word
file.

26.66%

38.12%

16.85%

gnome-calculato
o

Add and subtract numbers.

35.18%

36.25%

21.35%

git

Clone a respository

12.61%

11.78%

6.71%

clang++

Compile a C++ program

6.63%

10.32%

8.62%

g++

Compile a C++ program

4.52%

17.57%

2.53%

make

Run make on a C++ project.

11.97%

18.20%

6.22%

Average

17.48%

20.96%

12.12%




Measuring Bloat in Kernel

Linux kernel: “bloated and huge™,

monolithic
. . TBE
Measuring kernel bloat is hard! , 782
Translation Cache

[DECAF, TSE’16] TB3
Light-weight Qemu-based kernel

o Intercept translation state

o No need to acquire CPU state

Kernel Code

* Torvalds, Linus. LinuxCon, 2009


https://en.wikipedia.org/wiki/Linus_Torvalds

Kernel Bloat during Boot Process

Code % Kernel
Operating Executed Kernel Size [Code
System During Boot |(Bytes) Executed

(Bytes) During Boot

Debian 3.2.51-1 2192166 7494595 29.25%

APTEEEEE 2445095 10556370 23.16%
Wheezy
Windows 8.1 1112279 2691056 41.33%




Bloating in Kernel Results

Kernel Code Executed (B) | % Kernel Code Executed

System Call kFreeBSD kFreeBSD

eX|t 941961 778361 8. 92% 7. 89%
Supported 462053 Supported 4.68%

open+close 1076732 964614 10. 20% 9. 78%

average | otesss| awsans] st ndew




Bloating in Managed Execution Engines

e Designed to support all features.
e Managed programs may use some features

e Dynamic approach: code executed for a typical workload



Bloating in JVM

# Modules in % Instructions  |% Functions
Program Workload Executed Executed

10. 50% 25.13%

Created a java

program,

compiled and

executed it. 33.65%

Created a
Jabref bibliography file 31.88% 30.42%

Installed plugins,
created an admin
user, and created
Jenkins a pipeline 34.51% 32. 39%




Bloating in Python Interpreter

# Modules in |% Instructions |% Functions
Program Workload python Executed Executed
Calibre Opened and
. Cloned a 39.76% 69.23%
Mercurial i
repository 6 40.84% 44.44%
_ Installed a 14.52% 60.49%

program 9.21% 60.49%
Ubuntu

removed a 32.75% 14.32%
software center

program 44.88% 30.07%

Gramos Created a
P family tree 54.25% 36.67%




Debloating Approaches and Challenges

e Partition problem space into Binary and Source code
o Wide use of opensource libraries.

e Threat model --- BYOD scenario vs Adversary

e Challenges for code removal:

o Semantic gap across layers, Code sharing, Context sensitive approach



Debloating Approaches and Challenges

Late-stage Debloating

Near-zero runtime overhead
Analysis precision

Dynamic dependencies

Program Shared code
Dependency

Static
Dynamic Debloating
Context-sensitive

Runtime overhead
Dynamic dependencies




Questions



