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Code Bloating in Software Stack

Bloating: unused resource in

memory

o Management cost
o Vulnerabilities

o Gadget source

Modular and abstraction

Occurs across layers

User-level programs

Managed Execution
Engines

Kernel

Hardware



Bloat in User-level Programs

1. Bad coding practice

o Make copies of code for convenience

o Feature Creep

2. Inherit bloat from generic libraries



Bloat in User-level Programs

Bad coding practice --- redundant copies of code, unnecessary inlining, etc.
Feature-rich generic libraries (e.g., libc, BOOST, FFMpegq)

Static Approach --- What is the minimum amount of bloat in the program?
o Recursive dependency analysis
o Include address-taken functions for indirect code references

Dynamic Approach --- How much code executes for an average workload?

o Dynamic analysis in a controlled execution monitor (Pin for user programs and
QEMU for kernel)



Lower Bound Bloat Results (Using Static Analysis)

% Library % Overall % Library % Overall
Instructions Instructions Functions Functions
Program Required Required Required Required
firefox 67.20% 68.37% 36.42% 38.60%

chrome 69.72% 95.67% 33.57% 36.75%

webbrowser-app 58.86% 59.03% 29.34% 30.22%
vic 78.22% 78.25% 42.44% 42.79%
rhythmbox 77.92% 77.92% 29.83% 29.83%
evince 70.84% 71.34% 33.61% 36.19%
sublime 68.88% 84.95% 39.13% 41.42%
gnome-calculator 68.59% 69.21% 34.02% 36.18%
git 62.70% 78.11% 22.75% 29.11%
clang 53.99% 73.91% 34.32% 56.83%
g++ 52.36% 64.37% 23.90% 29.58%
make 52.13% 56.06% 23.11% 27.75%
Average 65.12% 73.10% 31.87% 36.27%




Lower Bound Bloat Results (using static analysis)

65% Library Code

65% Library Code

Firefox, google chrome, webbrowser-app, vic, rhythmbox, evince,
sublime, calculator, git, clang, gcc, make



User-level Programs Average Bloat Results

Workload

% Instructions
Executed in
Libraries

% Overall
Instructions
Executed

% Functions
Executed in
Libraries

# Unique
Syscalls (out of
402)

Open top 10 websites in Alexa’s list

28.66%

28.70%

17.04%

101

webbrowser-app

Open google.com and youtube.com.

Play a video on youtube.com.

12.70%

12.76%

15.28%

vic

Play 1 song

12.44%

12.44%

10.54%

libreoffice

Create, write and save a new word
file.

23.41%

23.41%

16.03%

sublime

Create, write and save a new word
file.

26.66%

38.12%

16.85%

gnome-calculato
o

Add and subtract numbers.

35.18%

36.25%

21.35%

git

Clone a respository

12.61%

11.78%

6.71%

clang++

Compile a C++ program

6.63%

10.32%

8.62%

g++

Compile a C++ program

4.52%

17.57%

2.53%

make

Run make on a C++ project.

11.97%

18.20%

6.22%

Average

17.48%

20.96%

12.12%




Measuring Bloat in Kernel

Linux kernel: “bloated and huge™,

monolithic
. . TBE
Measuring kernel bloat is hard! , 782
Translation Cache

[DECAF, TSE’16] TB3
Light-weight Qemu-based kernel

o Intercept translation state

o No need to acquire CPU state

Kernel Code

* Torvalds, Linus. LinuxCon, 2009


https://en.wikipedia.org/wiki/Linus_Torvalds

Kernel Bloat during Boot Process

Code % Kernel
Operating Executed Kernel Size [Code
System During Boot |(Bytes) Executed

(Bytes) During Boot

Debian 3.2.51-1 2192166 7494595 29.25%

APTEEEEE 2445095 10556370 23.16%
Wheezy
Windows 8.1 1112279 2691056 41.33%




Bloating in Kernel Results

Kernel Code Executed (B) | % Kernel Code Executed

System Call kFreeBSD kFreeBSD

eX|t 941961 778361 8. 92% 7. 89%
Supported 462053 Supported 4.68%

open+close 1076732 964614 10. 20% 9. 78%

average | otesss| awsans] st ndew




Bloating in Managed Execution Engines

e Designed to support all features.
e Managed programs may use some features

e Dynamic approach: code executed for a typical workload



Bloating in JVM

# Modules in % Instructions  |% Functions
Program Workload Executed Executed

10. 50% 25.13%

Created a java

program,

compiled and

executed it. 33.65%

Created a
Jabref bibliography file 31.88% 30.42%

Installed plugins,
created an admin
user, and created
Jenkins a pipeline 34.51% 32. 39%




Bloating in Python Interpreter

# Modules in |% Instructions |% Functions
Program Workload python Executed Executed
Calibre Opened and
. Cloned a 39.76% 69.23%
Mercurial i
repository 6 40.84% 44.44%
_ Installed a 14.52% 60.49%

program 9.21% 60.49%
Ubuntu

removed a 32.75% 14.32%
software center

program 44.88% 30.07%

Gramos Created a
P family tree 54.25% 36.67%




Debloating Approaches and Challenges

e Partition problem space into Binary and Source code
o Wide use of opensource libraries.

e Threat model --- BYOD scenario vs Adversary

e Challenges for code removal:

o Semantic gap across layers, Code sharing, Context sensitive approach



Debloating Approaches and Challenges

Late-stage Debloating

Near-zero runtime overhead
Analysis precision

Dynamic dependencies

Program Shared code
Dependency

Static
Dynamic Debloating
Context-sensitive

Runtime overhead
Dynamic dependencies




Questions



