Session 3: Software and Protocol Debloating

FEAST'17, November 3, 2017, Dallas, TX, USA

A Multi-OS Cross-Layer Study of Bloating in User Programes,
Kernel and Managed Execution Environments

Anh Quach, Rukayat Erinfolami, David Demicco, Aravind Prakash
Binghamton University
{aquach1,rerinfol,ddemiccl,aprakash}@binghamton.edu

ABSTRACT

We present a study of bloating across the software stack. We study
user-level programs, OS kernels and Java virtual machine. We em-
ploy: (1) static measurements to detect limits to debloating, and (2)
dynamic measurements to detect how much of the code available
to a program is utilized under typical payloads. We incorporate an
ultra-light weight tracing procedure in a whole-system emulator to
measure the bloat in kernel. We measure the amount of kernel code
that executes during the boot process and during the execution of
popular system calls. Our findings show that bloating is pervasive
and severe. A significant fraction of code across the software stack
is never executed and provides scope for debloating.

1 INTRODUCTION

Traditional software development favors modular and “plug-and-
play” mode of development wherein, code is well organized into
reusable modules and/or functions. Whenever a functionality is
required, the module is loaded and made available to the user. Such
a model presents multiple benefits. First, by reusing as much of
existing code as possible, the overall development time is reduced.
Second, because the code is repeatedly used, bugs in the code are
discovered in a timely manner.

By design, abstractions are generic and contain code that services
multiple clients. For example, shared library libc contains multiple
functionalities that service a wide variety of programs. Similarly, the
Java runtime and the Python interpreter support a full feature set
of the respective languages irrespective of whether a program uses
(or not) those features. Same is the case with the Linux kernel. For
example Linux supports 100s of system calls, although a majority
of those system calls are not used by a majority of programs.

Bloating occurs when more-than-necessary amount of code is
present in the memory, and can have detrimental impact. First, there
is the overhead of having to manage the unwanted code. Second,
any vulnerabilities in the unwanted code become active points
of potentially exploitable weaknesses. Finally, if/when software is
compromised, the unwanted code can be utilized by an attacker
(e.g., in code-reuse attacks) to abuse the system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FEAST’17, November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5395-3/17/11...$15.00
https://doi.org/10.1145/3141235.3141242

65

Bloating can occur at multiple levels in the execution stack—
typically across layers of abstraction.

e User-level Programs: User-level programs are designed
to perform specific tasks. However, these programs rely on
code (open or closed source) that are modularized to contain
specific (e.g., libgsl.so: GNU scientific library) or generic (e.g.,
libe.so: C library for IO, signal handling, string handling,
etc.) functionalities. There are multiple causes why these
programs can be bloated. First, they could be subjected to
bad coding practices wherein developers make copies of
code for convenience. Next, they inherit bloat from generic
libraries such as libc that they depend on. These libraries
pack several functionalities, several of which are never used
by the user program. Understanding how these programs
use the code available to them is key to designing solutions
to eliminate bloat.

e OS Kernel: Kernels are complex system software with
strong interconnected components such as memory and pro-
cess management, and IO. They perform several functions
that are critical for regular operations in a system. While
there has been significant debate on the design philosophy
for kernels [6], modern Linux kernels are primarily mono-
lithic with support for loadable kernel modules. Moreover
the size of the Linux kernel has grown from several kilobytes
to megabytes. Even for simple tasks, within the kernel con-
text of execution, large amounts of sensitive code is available
in the form of bloat. Understanding code utility in the kernel
will aid in development of kernels with low sensitive code
footprint.

e Managed Execution: Execution engines such as the Java
virtual machine and Python interpreter are user programs
that interpret and execute special code (e.g., Java byte code).
While the execution runtime supports a multitude of func-
tionalities, managed programs may use a fraction of func-
tionalities. As such, the execution environment is usually
in a bloated state. The layer of abstraction to interpret the
bytecode necessitates generality, which in turn forms the
basis for bloat.

e Hardware: Bloat is not restricted to software. Modern hard-
ware are packed with several features (e.g., MPX, Intel SGX)
that are seldom used by regular programs. However, if/when
a program is compromised, these hardware features become
available to an attacker and may be utilized to abuse the
system. From the perspective of a program being executed,
the hardware is therefore bloated.

In this paper, we present a study on bloating that spans user-
level programs, OS kernels and managed execution environments
such as Java runtime and the Python interpreter. Our goal is to

https://doi.org/10.1145/3141235.3141242

Session 3: Software and Protocol Debloating

understand how much of code in the memory is used for average
or typical work loads under different settings.

For the user-level programs and the managed execution envi-
ronments, we pursue two approaches. In the first static approach,
we statically examine user-level programs to determine the lower
bound to bloat. That is, what is the minimum amount of code in the
program’s memory that is never going to execute? This is an under
approximation of how bloated a program’s memory is. For exam-
ple, if the C library is loaded into a program’s memory, and if we
can statically verify that the program uses just one function (say
printf) in libc, then the remainder of code other than printf and its
dependencies contribute to bloat. In the second dynamic approach,
we execute the program in a controlled execution environment
and measure the amount of code that actually executes when the
program is subjected to various payloads. In essence, we seek to
answer the question: how much of a program’s code executes for
typical payloads on a program?

In order to study the bloat in OS kernels, we execute the kernel
in an emulated environment and measure the amount of kernel
code that actually executes.

2 EXPERIMENTAL SETUP
2.1 Measuring Bloat Statically

For the user-level programs (i.e., browsers, media players, databases,
etc.) we perform two levels of evaluation. First, we employ static
binary analysis to determine the lower bound for bloat. Specifically,
for each program of interest, we start from the program executable
and recursively traverse through program dependencies (i.e., shared
libraries) to generate a program-wide function call graph. This is
achieved by using the import table of the executable. Then, for
each function in the call graph, we disassemble the function and
compute the number of bytes of code in the function. We use IDApro
to disassemble the executable and individual libraries. Summation
of all the code in all the functions in program-wide call graph forms
the upper bound to the amount of code the program can execute.
Any code in memory outside the call graph is bloat. The lower
bound for bloat (i.e., minimum amount of bloat in the program)
is the amount of code in the memory that is not executed by the
program.

Here, any code in the main executable itself is deemed necessary.
Note that such an assumption is not far fetched because the compiler
typically eliminates code in the executable that is not reachable.

Indirect code references: Branches to certain indirect code ref-
erences (e.g., function pointers, C++ virtual function targets) are
accomplished using indirect branch instructions, and therefore will
not appear as dependencies in the call graph. During static de-
termination, we take a conservative approach and include all the
address-taken functions in the program as potential targets. We do
this by extracting all immediate values in the memory that corre-
spond to valid function addresses. We include such functions as
required functions.

Note that the code from call graph in addition with code from
address-taken functions gives an over approximation of code the

66

FEAST'17, November 3, 2017, Dallas, TX, USA

program may execute. However, in practice, the code that is exe-
cuted is much smaller than this theoretical limit. Therefore, this
forms the lower bound for the amount of bloat in the program.

2.2 Average Case Runtime Bloat Determination

We also conduct experiments to determine the amount of bloat
a program exhibits in the average use case. Here, our goal is to
find out how much of the program code actually executes when
subjected to typical payloads. The remainder code in the memory
is bloat for that particular instance of execution. That is, we wish
to answer the question: How much of code in the memory typically
executes? The answer to this question will shed light on different
ways a program can be debloated so as to minimize the attack
surface available to an attacker.

To determine the runtime bloat, we execute the program within
a carefully controlled execution monitor. We then subject the pro-
gram to different types of payloads that the program would typically
encounter during normal use. For example, we tested browser ap-
plications in our test set by loading Alexa’s [1] top 10 websites. We
also manually explored different menu items to trigger commonly-
encountered code paths. Note that our intention is not to exhaus-
tively test the program to explore all code paths. But rather, we
wish to capture the typical usage scenarios of the program in or-
der to determine popular code paths. Next, we record the unique
instructions executed by the program. Given the total amount of
code loaded in the memory, we can compute the percentage of code
that executes on typical payloads, and consequently bloat.

— TB1

TB4
E R A

N QEMU

Kernel Code

TB2
Translation Cache

TB3

Figure 1: Overview of bloat measurement in the kernel.

2.3 Measuring Bloat in the Kernel

As a sensitive piece of system software, bloat in kernel could se-
verely impact security. We therefore aim to measure the amount
of bloat in the kernel. Unlike regular programs, measuring bloat in
the kernel is hard. One approach would be to obtain an execution
trace of the kernel using a full-system emulator (e.g., DECAF [8]),
and to examine the footprint to estimate bloat. However, subjecting
kernel to even a coarse-grained introspection leads to prohibitive
performance overhead that makes experiments impractical.

For our evaluation we modify Qemu, a full system dynamic
translator. Unlike regular tracing where the program state must
be acquired at regular intervals, we are only interested in iden-
tifying the code that was executed in the kernel. We design an

Session 3: Software and Protocol Debloating

ultra-light weight execution tracer that records only the code that
was executed within the kernel context. The overview of our mea-
surement system is presented in Figure 1. In a nutshell, like most
other dynamic translators (e.g., DynamoRIO and Intel’s Pin), Qemu
maintains a translation code cache. Whenever any code (kernel or
user) must be executed, during the first instance, it is translated
into a “Translation Block" (TB) and is maintained within the trans-
lation cache. Each TB is analogous to a basic block in the code. This
one time transformation is key to the performance benefits of the
emulator.

We intercept the translation stage in Qemu and whenever a TB
is generated, we record the virtual address and size of the code that
corresponds to the TB. Next, we filter the blocks that correspond to
the kernel address region to identify kernel code that was executed.
Note that this is different from regular tracing because unlike regu-
lar tracing (e.g., DECAF [8]), the TBs themselves are unmodified
and we do not frequently seek CPU state. As an additional benefit,
such an approach allows us to measure multiple kernels without
any modification to the measurement code.

We make two specific measurements:

(1) Boot Process: We seek to evaluate how much of the kernel
code actually executes during the boot process. This infor-
mation will help determine the attack surface available for
malware that target the boot process. In this case, we gather
all the kernel code that was executed irrespective of the
process context under which the execution occurred.
System calls and bloat: We seek to evaluate the footprint
of different system calls in the kernel. User programs in-
teract with the kernel through system calls. Therefore, by
examining the footprint of commonly used system calls in
the kernel, we can estimate the amount of kernel code that
typically executes during program execution. This also re-
veals the scope to debloat the kernel. In order to measure
the system calls, we:

(a) We run a synthetic program that invokes specific system

call(s).

(b) Upon reaching the entry point of the program, we clear
the translation cache. That is, we delete all the TBs to force
translation of any future code. This process ensures that
any system calls executed by the loader are excluded.

(c) We record the kernel code that resulted in emission of
TBs, and stop recording when the servicing of system call
completes.

(2

~

Translation cache is a per-CPU data structure. Therefore, to elimi-
nate interference due to kernel code execution from another process
context, we use the CR3 register to filter the code that corresponds
to the synthetic program we created. Because the CR3 register
uniquely represents a process context, we retrieve the kernel code
that executed in the context of our synthetic program.

24

We aim to measure the amount of code in the runtime/interpreter
that is actually triggered during the execution of typical language-
specific programs. We subject Java virtual machine and Python
interpreter to different—typical—payloads and measure the amount

Measuring Bloat in Execution Engines

67

FEAST'17, November 3, 2017, Dallas, TX, USA

of code that executes during the execution of a Java/Python pro-
gram. Next, we identify the code in runtime that is common to
multiple payloads. This gives us the core component of the runtime
that is exercised during a typical execution (e.g., bytecode reader).
We hope to obtain a sense of how much code exists in the runtime
vis-a-vis the amount of code that is needed for typical program
execution.

3 RESULTS

Test Set: Our test set comprises of a wide range of programs ranging
from complex browsers (e.g., Firefox), media player (vlc), compilers
(clang++, g++), text editors (sublime), and utility programs (make).
For the kernels, we pick Debian Wheezy FreeBSD 64bit, Debian
Wheezy AMD 64bit, and Windows 8.1 OSes. We use the Java vir-
tual machine (JDK 1.8.0) and Python interpreter 2.7.6 to evaluate
bloating in managed execution engines.

3.1 Bloating in User-Level Programs

Static measurement of bloat—lower bound. The results of our
static measurement experiments are presented in Table 1. As an
average overestimate (as described in Section 4.1), programs in our
test set require only 65% of the code in the libraries and 73% of
the code including the libraries and the executable. Chrome is an
exceptional case where the executable is relatively large and con-
tributes a large amount of code to the overall code in the memory.
While all the libraries loaded by Chrome add up to 4.04 million
instructions, chrome.exe alone accounts for 28.3 million instruc-
tions. On average, only 36% of functions in the memory are used
by programs. This indicates that there exists space for research
on optimal code organization within modules. For example, we
may be able to group frequently used functions across different
libraries into a single library so as to reduce the overall bloat across
programs.

Dynamic measurement of bloat for typical loads. We ran the
programs in our test set on Pin, a dynamic translator, and we ex-
amined the execution profile of the programs. Results are tabulated
in Table 2. Programs were subjected workloads that the programs
are typically run on (column 2). Only about 21% (average) of code
in the memory executes for typical payloads, which corresponds to
12.12% of functions. Note that even a heavy program like firefox
executes less than 30% of code. That is, most of the code is never
executed in most of the cases. This provides us with insights on
potential approaches to debloat in a context-specific manner (more
in Section 4.2).

3.2 Bloating in Kernel

Below, we present our findings from kernel experiments. The overall
kernel code in our study includes code in the kernel and all the
loaded kernel modules.

Boot time code execution. We measured the fraction of kernel
code that was executed during the boot process. Our results are
tabulated in Table 3. In each case, we monitored the unique TBs
that were created between the system being turned on and the login
prompt being displayed to the user. Across three kernels tested, on

Session 3: Software and Protocol Debloating

FEAST'17, November 3, 2017, Dallas, TX, USA

Table 1: Static bloat measurement. LIR: Percentage of instructions in all the dependent libraries that a program may execute.
OIR: Percentage of instructions in all the libraries + executable that a program may execute. LFR: Percentage of functions in
all the dependent libraries that a program may execute. OFR: Percentage of functions in all the libraries + executable that a

program may execute.

Program % Library Instructions | % Overall Instructions | % Library Functions | % Overall Functions
Required (LIR) Required (OIR) Required (LFR) Required (OFR)
firefox 67.20% 68.37% 36.42% 38.60%
chrome 69.72% 95.67% 33.57% 36.75%
webbrowser-app 58.86% 59.03% 29.34% 30.22%
vlc 78.22% 78.25% 42.44% 42.79%
rhythmbox 77.92% 77.92% 29.83% 29.83%
evince 70.84% 71.34% 33.61% 36.19%
sublime 68.88% 84.95% 39.13% 41.42%
gnome calculator 68.59% 69.21% 34.02% 36.18%
git 62.70% 78.11% 22.75% 29.11%
clang 53.99% 73.91% 34.32% 56.83%
g++ 52.36% 64.37% 23.90% 29.58%
make 52.13% 56.06% 23.11% 27.75%
Average 65.11% 73.01% 31.87% 36.27%

Table 2: Runtime bloat measurement. Percentage of code executed in user-level programs for typical usage. For each programs,
we list the number of shared libraries loaded, % of library instructions executed, % instructions in process executed, % library
functions executed, and number of unique system calls invoked by both program and shared libraries.

. . % Instructions . % Functions
#Libraries % Overall Instructions
Program Workload Executed Executed | #Syscalls
loaded R . Executed R .
in Libraries in Libraries
O top 10 bsit
firefox PER fop 1 WEDSILES 146 28.66% 28.70% 17.04% 101
in Alexa list
Open google.com.
webbrowser-app Open and play 182 12.70% 12.76% 15.28% 93
a video youtube.com.
vle Play 1 song 681 12.44% 12.44% 10.54% 80
Creat ite and
libreoffice reate, write an 191 23.41% 23.41% 16.03% 86
save a new word file.
. Create, write and
sublime 77 26.66% 38.12% 16.85 67
save a new word file.
Add and
gnome-calculator an 81 35.18% 36.25% 21.35% 59
subtract numbers.
git Clone a respository 41 12.61% 11.78% 6.71% 47
clang++ Compile a C++ program 10 6.63% 10.32% 8.62 23
g++ Compile a C++ program 9 4.52% 17.57% 2.53% 17
k
make Run make 9 11.97% 18.20% 6.22% 26
on a C++ project.
Average 17.48% 20.96% 12.12% 59.9

average only 31.25% of the kernel code executes during the boot
process.

System-call-specific code execution. We also measured the ker-
nel code that is invoked within individual system calls that are
frequently used in Linux [16]. Our findings are tabulated in Table 4.
Most system calls exercise under 10% of kernel code.

68

3.3 Bloating in Managed Execution Engines

We also measured the bloat in Java Virtual Machine and Python in-
terpreter. Specifically, for JVM, we ran Java programs and examined
the footprint in the JVM. For Python, we ran five programs and
recorded the interpreter and shared library code that was executed.
Our findings are tabulated in Table 5 and Table 6. Our results show
that only about 30% of functions and (32%) of code is executed in
the JVM.

Session 3: Software and Protocol Debloating

Table 3: Percentage of kernel code executed at boot time

Code %
Operating Executed | Kernel | Kernel Code
System During Size (B) Executed

Boot (B) During Boot
Debian Wheezy 2192166 | 7494595 29.25%
kFreeBSD Wheezy 2445095 | 10556370 23.16%
Windows 8.1 1112279 2691056 41.33%
Average 1916513 | 6914007 31.25%

Table 4: Percentage of code executed in kernel space in
kFreeBSD and Debian for popular system calls.

Kernel Code % Kernel Code
System Call | Executed (B) Executed
kFreeBSD | Debian | kFreeBSD | Debian
exit 941961 778361 8.92% 7.89%
exit_group Not 462053 | ot 4.68%
Supported Supported
open 1076732 | 964614 10.20% | 9.78%
+ close
getuid 792612 575879 7.51% 5.84%
execve 1453331 | 1388650 13.77% | 14.07%
getewd 681763 903860 6.46% 9.16%
write 792519 713358 7.51% 7.23%
getpid 670177 533857 6.35% 5.41%
Average 938293 | 803343 8.89% 8.14%
Table 5: Bloating in Java programs.
% %
Program | Workload | Modules | Instructions | Functions
in JVM Executed Executed
Create,
Eclipse compile, 6 10.50% 25.13%
and execute 8 33.65% 35.45%
a program
Create a
Jabref bibliography 13 31.88% 30.42%
file
Install
plugins,
Jenkins Cre?te an 12 34.51% 32.39%
admin user,
and create
a pipeline
Average 10 27.63% 30.85%

4 DEBLOATING—APPROACHES AND
CHALLENGES

We explore two approaches to debloating—a static and a runtime
approach.

69

FEAST'17, November 3, 2017, Dallas, TX, USA

Table 6: Bloating in Python programs.

% %
Program | Workload | Modules | Instructions | Functions
in python | Executed Executed
. Open and 34 6.75% 4.97%
Calibre | 2 a book 34 7.08% 7.66%
Mercurial Clone 4 39.76% 69.23%
a repository 6 40.84% 44.44%
Pip Install a 11 14.52% 60.49%
package 11 9.21% 60.49%
Ubuntu Install 2 11.33% 53.85%
software | and remove 16 32.75% 14.32%
center a program 17 44.88% 30.07%
Create
Gramps a family 8 54.25% 36.67%
tree
Average 14 26.14% 38.22%

4.1 Static Approach

In the first approach, we could determine the static dependencies for
a program and ensure that remaining code is eliminated from the
memory. In this approach, we would first identify the static bloat
using the technique described in Section 3.1, and then employ a
late-stage component (e.g., a modified loader) that would selectively
eliminate unwanted functionality. The main advantage of such an
approach is that it imposes near-zero runtime overhead (except for
the one-time load overhead).

Challenges: There are multiple challenges that need addressing.
First, the static dependencies must be complete to prevent runtime
errors. In our approach, we take a conservative approach to obtain
the overestimate of the amount of code required by the program.
While this guarantees correctness, it does not yield optimal debloat-
ing. Precise analysis will be needed to achieve optimal debloating.
Such an analysis is known to be hard especially for binaries. Second,
language-specific details must be specifically handled. For example,
the virtual function targets in C++ are obtained from a class-specific
table called the VTable. A precise analysis must be object-sensitive
in order to handle C++ code and precisely identify the potential tar-
gets for virtual function calls. Similar challenges exist for execution
engines like Java and Python. Third, modules can be loaded during
the program runtime (e.g., using dlopen) or code may be generated
during runtime through Just-In-Time (JIT) compilation. These code
modules may exhibit dependencies on code that has already been
removed. Special handling is required to handle such JIT code. Fail-
ure to handle such cases will result in undesirable program crashes.
Finally, selectively disabling/removing code from the memory will
hinder code sharing. Shared code is typically memory-mapped into
multiple address spaces and a single physical copy is loaded into the
memory. Due to copy-on-write, deleting a copy in memory for one
process will force duplication of data, which could in turn hinder
performance. Special handling will be needed to allow code sharing
without significant performance impact.

4.2 Dynamic Approach

More ambitious debloating can be achieved through a dynamic
approach that is context sensitive. In essence, the actual code that

Session 3: Software and Protocol Debloating

the program requires to process a given input is known upon con-
cretion of input. That is, when the concrete input is known, the
precise dependencies can be computed for that input. Therefore, for
that input, other code in the memory is unwanted and can there-
fore be safely removed/disabled. This approach is context sensitive
and requires a runtime component that selectively enables and
disables functionality in the memory depending on the program
input. On the one hand, such a technique has potential for high
level of precision whereas it imposes runtime overhead due to the
per-input interception performed by the runtime component. Anal-
ogous approaches have been experimented upon in the context of
CFI [7, 11].

Challenges: A key challenge in dynamic approach is to contain the
runtime overhead imposed by the solution. Additionally, challenges
faced by static approach (JIT code, code sharing, language specific
challenges) are also faced by the dynamic approach.

Additionally, debloating closed-source executables requires ana-
lyzing the binary, which is hard. Correct disassembly, accurate
control-flow graph recovery, correct binary instrumentation, etc.
are all practical challenges faced in binary analysis, and must be
solved in order to successfully debloat binaries.

5 RELATED WORK

Managed programing languages suffer from significant runtime
overhead or bloating due to the extra logic added to manage the ex-
ecution environment. On the one hand, Xu et al.[17] and Bu et al.[4]
delegate the debloating task to developers, classifying this problem
as purely software engineer related. On the other hand, Jiang et
al.[10] propose a feature-based solution that allows a developer
to remove certain features in Java bytecode by performing static
analysis. Further, Jiang et al.[9] introduce an automatic approach to
statically analyze and remove unused code in both Java application
and JRE.

Major impact of bloating is felt in the realm of software security,
particularly in code-reuse attacks where an attacker reuses existing
code in the memory to achieve malicious computation. ROP [3, 5,
14] and COOQP [15] are examples of code-reuse attacks. Modern
defenses have focused on enforcing runtime program properties
(e.g., CFI [2], SPI [12, 13]) to defeat code-reuse attacks. Generally,
debloating reduces the amount of code that needs protection, and
therefore strengthens the overall security of the system.

The techniques used in this paper, particularly virtual-machine
introspection on Qemu has been previously explored (e.g., DE-
CAF [8]) to provide analysis frameworks that allow fine-grained
introspection. These solutions modify the code cache to embed
callbacks to analysis code such that timely analysis can be per-
formed upon specific events in the guest OS. While we borrow
ideas from those solutions, our approach is unique in the sense that
we do not modify individual translation blocks. Instead, we rely on
monitoring the translation cache.

6 CONCLUSION

We conducted experiments to measure bloat at multiple levels of
abstraction—user mode programs, managed execution (JVM and
Python interpreter) and the OS kernel. For the user level programs,

70

FEAST'17, November 3, 2017, Dallas, TX, USA

we also measure the static lower bound for bloat. Our findings
show that (1) bloating is pervasive and a cross-layer problem, and
(2) there exists significant research space for systematic debloating
at multiple layers in the execution stack.

7 ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for their feedback.
This research was supported in part by Office of Naval Research
Grant #N00014-17-1-2929. Any opinions, findings and conclusions
in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] Alexa top 500 sites on the web. https://www.alexa.com/topsites. (????). Accessed:
2017-09-17.

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-flow
Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (CCS’05). 340-353.

[3] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
Oriented Programming: A New Class of Code-Reuse Attack. In Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security.
ACM, 30-40.

[4] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J Carey. 2013. A bloat-
aware design for big data applications. In ACM SIGPLAN Notices, Vol. 48. ACM,
119-130.

[5] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 559-572.

[6] Chris DiBona and Sam Ockman. 1999. Open sources: Voices from the open source
revolution. " O’Reilly Media, Inc.".

[7] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. Efficient Protection of Path-Sensitive Control Security. In 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC.

[8] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen
Wang, Rundong Zhou, and Heng Yin. 2014. Make it work, make it right, make
it fast: Building a platform-neutral whole-system dynamic binary analysis plat-
form. In Proceedings of the 2014 International Symposium on Software Testing and
Analysis. ACM, 248-258.

[9] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization

and Bloatware Mitigation Based on Static Analysis. In Computer Software and

Applications Conference (COMPSAC), 2016 IEEE 40th Annual, Vol. 1. IEEE, 12-21.

Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. 2015. A preliminary analysis

and case study of feature-based software customization. In Software Quality,

Reliability and Security-Companion (QRS-C), 2015 IEEE International Conference

on. IEEE, 184-185.

Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security.

ACM, 914-926.

Aravind Prakash and Heng Yin. 2015. Defeating ROP Through Denial of Stack

Pivot. In Proceedings of the 31st Annual Computer Security Applications Conference

(ACSAC 2015).

Anh Quach, Matthew Cole, and Aravind Prakash. 2017. Supplementing Modern

Software Defenses with Stack-Pointer Sanity. In Proceedings of the 33rd Annual

Computer Security Applications Conference (ACSAC 2017).

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86). In Proceedings of the 14th ACM conference

on Computer and communications security. ACM, 552-561.

Felix Shuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming,

On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In

Proceedings of 36th IEEE Symposium on Security and Privacy (Oakland’15).

Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E. Porter. 2016.

A Study of Modern Linux API Usage and Compatibility: What to Support when

You’Re Supporting. In Proceedings of the Eleventh European Conference on Com-

puter Systems (EuroSys '16). ACM, New York, NY, USA, Article 16, 16 pages.

https://doi.org/10.1145/2901318.2901341

Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky.

2010. Software bloat analysis: finding, removing, and preventing performance

problems in modern large-scale object-oriented applications. In Proceedings of

the FSE/SDP workshop on Future of software engineering research. ACM, 421-426.

[10

[11

=
)

(13

[14

[15

(17

https://doi.org/10.1145/2901318.2901341

	Abstract
	1 Introduction
	2 Experimental Setup
	2.1 Measuring Bloat Statically
	2.2 Average Case Runtime Bloat Determination
	2.3 Measuring Bloat in the Kernel
	2.4 Measuring Bloat in Execution Engines

	3 Results
	3.1 Bloating in User-Level Programs
	3.2 Bloating in Kernel
	3.3 Bloating in Managed Execution Engines

	4 Debloating—Approaches and Challenges
	4.1 Static Approach
	4.2 Dynamic Approach

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References

