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ABSTRACT
Current software development methodologies and practices, while
enabling the production of large complex software systems, can
have a serious negative impact on software quality. These negative
impacts include excessive and unnecessary software complexity,
higher probability of software vulnerabilities, diminished execution
performance in both time and space, and the inability to easily and
rapidly deploy even minor updates to deployed software, to name a
few. Consequently, there has been growing interest in the capabil-
ity to do late-stage software (i.e., at the binary level) manipulation
to address these negative impacts. Unfortunately, highly robust,
late-stage manipulation of arbitrary binaries is difficult due to com-
plex implementation techniques and the corresponding software
structures. Indeed, many binary rewriters have limitations that
constrain their use. For example, to the best of our knowledge, no
binary rewriters handle applications that include and use exception
handlers—a feature used in programming languages such as C++,
Ada, Common Lisp, ML, to name a few.

This paper describes how Zipr, an efficient binary rewriter, ma-
nipulates applications with exception handlers and tables which
are required for unwinding the stack. While the technique should
be applicable to other binary rewriters, it is particularly useful for
Zipr because the recovery of the IR exposed in exception handling
tables significantly improves the runtime performance of Zipr’ed
binaries—average performance overhead on the full SPEC CPU2006
benchmark is reduced from 15% to 3%.

1 INTRODUCTION
Software systems are a vital component of critical infrastructure
such as transportation systems, communications systems, finan-
cial systems, power generation and distribution systems, and de-
fense systems. Current software development methodologies and
practices, while enabling the rapid production of these complex
software systems, can have a serious negative impact on software
quality. These negative impacts include excessive and unnecessary
software complexity, higher probability of software vulnerabilities,
diminished execution performance in both time and space, and the
inability to easily and rapidly deploy even minor updates to de-
ployed software, to name a few. Furthermore, the move to network
and mobile computing and constant pressure for new features and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FEAST’17, November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5395-3/17/11. . . $15.00
https://doi.org/10.1145/3141235.3141240

capabilities has made these vulnerable systems easily accessible to
malicious adversaries.

Consequently, there has been growing interest in developing
capabilities enabling late-stage software manipulation to address
these negative impacts. For example, there is high interest is modi-
fying legacy binaries to improve security. Modification techniques
suggested include adding security constructs (i.e., control-flow in-
tegrity, canaries, diversity, etc.), reducing the attack surface by
removing unneeded functionality, and applying patches to fix secu-
rity issues discovered post-deployment. Unfortunately, highly ro-
bust, late-stage manipulation of arbitrary binaries to apply systemic
changes is difficult due to complex implementation techniques and
the corresponding software structures. Indeed, many binary rewrit-
ers have limitations that constrain their use. To the best of our
knowledge, no static binary rewriters handle applications that use
exception handlers or stack unwinding—a feature integral to pro-
gramming languages such as C++, Ada, Common Lisp, ML, to name
a few.

This paper describes how we have extended Zipr [5], an efficient
binary rewriter, to manipulate applications with exception handlers
and tables, which are required for unwinding the stack. Unwind-
ing the stack is necessary for handling exceptions, object-oriented
programs (invoking necessary destructors), multi-threading (when
a thread exits, destructors on the stack must be invoked), and to
support debuggers such as gdb, dbx, and lldb. While the approach
should be applicable to other binary rewriters, it is particularly
useful for Zipr because the recovery of the IR in exception handling
tables significantly improves the runtime performance of Zipr’ed
binaries—average performance overhead on the full SPEC CPU2006
benchmark is reduced from 15% to 3%.

The major contributions of this paper are:

• We highlight the importance and costs of supporting stack
unwinding for exception handling in a static binary rewriter.
• We propose the first technique for constructing and manag-
ing an easy-to-use intermediate representation (IR), as well
as realizing that IR into a rewritten form in an output binary.
• We thoroughly evaluate the proposed technique in a modern,
fully-featured binary rewriter, including evaluation on the
full SPEC CPU2006 benchmark suite, a case study highlight-
ing a security transformation, and a case study demonstrat-
ing stability across programming languages (C++, Ada) and
supporting runtime environments (Ada).

2 EXCEPTIONAL BINARY REWRITING
2.1 Architectural Overview
Zipr++ provides full support for exception handling by extending
the Zipr binary rewriting infrastructure. Zipr is a platform for stati-
cally rewriting programs/libraries without access to their source
code, debugging symbols or other metadata and offers an API and
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Figure 1: Overview of the Zipr++ rewriting pipeline. New ex-
tensions to support exception handling are shown in blue.

SDK for third parties to write extensions and customizations to
instantiate arbitrary user-defined transformations [5]. Although it
is a tool for general static binary rewriting, the primary use case
for Zipr to date has been to retrofit legacy binaries with enhanced
security. Zipr was the key defensive technology used in the DARPA
Cyber Grand Challenge to diversify and augment binaries with
point patches and control-flow integrity protections [5, 14]. Other
uses include effecting moving-target defenses against blind ROP
attacks [6] and protecting autonomous drones [4].

Figure 1 illustrates the three major phases of the Zipr/Zipr++
pipeline: Intermediate Representation (IR) Construction, IR Manipu-
lation and IR Instantiation, with the required extensions to support
exception handling (shown in blue).

In the IR Construction phase, Zipr analyzes a program or library
to detect instructions, functions and data objects.

The recovered IR is passed to the IR Manipulation stage where
user-defined transformations programmatically modify the input
program by altering its IR.

Finally, the transformed IR is passed to the IR Instantiation phase
that generates a rewritten version of the program (Section 2.4). The
transformed program is executable on the same platform as the
original program without any additional runtime support.

To generate an efficient statically rewritten program/library, IR
Instantiation relies on the freedom to reassemble most instruction
sequences (basic blocks, functions, etc.) in the output at different
addresses than their addresses in the input. There are certain se-
quences that cannot be moved, however. The IR Construction phase
detects these immovable sequences and pins their addresses. For
example, if a return address is used for EH-driven stack unwind-
ing, Zipr must pin that return address, and a call instruction that
writes the address to the stack must be updated to write the pinned
address. We extended this functionality (in Zipr++) by supporting
EH-table rewriting, allowing the tool more flexibility in placement
of functions and the opportunity to generate more optimized code
sequences (Section 2.2).

2.2 EH Frame IR Construction
In Linux ELF executable files, the exception handling and stack un-
winding information is stored in several sections, namely .eh_frame_hdr,
.eh_frame, and .gcc_except_table, and some is stored as read-
only data and code in the .text section.

The main entry point for stack unwinding and exception han-
dling is the .eh_frame. This section contains a sequence of variable
length table entries. A table entry is either a common information
entry (CIE) or a frame descriptor entry (FDE). An FDE describes how
to unwind and cleanup the stack for a range of instructions. Each
FDE points at a CIE, which contains information common across
many FDEs. CIEs are a way to avoid duplication in the FDEs and
save space in the tables. It is common to have one FDE for each
function in the program, but a function may have multiple FDEs
for different portions of the program. Figure 2 shows an example,
with FDE 3 expanded.

FDEs record a variety of information necessary for stack unwind-
ing, cleanup, and exception handling. In particular, they record a
DWARF program, a pointer to a personality routine, as well as a
pointer to a so-called language specific data area (LSDA) (held in
the .gcc_except_table section).

The DWARF program (split between the CIE and FDE) specifies
how to unwind the stack. To be precise, it is a branch-free sequence
of instructions that describe how to build a table that can be used to
unwind the stack. These instructions are labeled DP# in the figure.
The table contains a row for each address in the FDE’s range, and
a column for each register in the program. An entry in the table,
when defined, is an offset from the canonical frame address (CFA)
where a register is stored during an unwind event. The CFA is
typically represented by the stack pointer, and this fact is typically
specified by the DWARF program in the CIE.

Where the DWARF program specifies how to unwind the stack,
the personality routine and LSDA help the runtime system call
destructors and catch exceptions. The personality routine knows
how to parse the LSDA. Technically, the LSDA is language- and
compiler-specific, but every language and compiler we examined
use the same format. All programs using the same format is a direct
consequence of how GCC implements the exception handling in its
language-agnostic backend and other compilers striving for binary
compatibility with GCC.

Besides additional fields to support denser encoding, the LSDA
has a table with an entry for each call site (CS) in the FDE’s range.
An entry in the call site table encodes the address of the call site,
as well as information about what types of exceptions should be
caught, and if the call site has a pointer to code (called a landing pad
or LP) that performs the necessary cleanup. In the figure, func3
has a string that is allocated on the stack, and if the call to func1
throws an exception, that string must have its destructor called.
Consequently, an entry in the LSDA specifies where the call site is,
that actions needs to be taken on an exception, where the code is
to perform those actions (the LP), and further specifies that the call
site catches exceptions of type int.

The .eh_frame_hdr section is optional and used to help the
runtime locate the proper entries in .eh_frame more quickly by
using a binary search instead of a linear search. The .eh_frame
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.eh_frame_hdr 

FDE 1 

FDE 2 
FDE 3 
CIE:  
Start: &func3 
Size:  120 
Program: 
  DP3 
  DP4 
  DP5 
LSDA:  

.eh_frame 
CIE 1 
Personality: 
Program: 
  DP1 
  DP2 
 

.text .gcc_except_table 

.rodata 

 cpp_personality: 
    … LSDA3 

CS tab len: 1 
CS table[0]: 
  CS Start:  
  CS Size: 5 
  Landing pad:  
  Action: 
Action table[0]: 
  Type: 
  Next: null 
Type Table[0]: 
  Type:  

std::type_info  
for int 

 func3: 
    call string() 
    … 
    call func1 
    … 
    ret 
 func3_lp: 
    call ~string() 
    … 
 

&func3 
FDE:  

&func2 
FDE:  

&func1 
FDE:  

Figure 2: A simplified, high-level example of the exception handling information stored in an ELF binary.

section cannot be binary searched directly because of the variable
length encodings of fields.

Together, these individual tables and landing pads are used to
unwind the stack and invoke the proper destructors. Tables are gen-
erally indexed based on return address but may be indexed by other
program counters in the event of a forced unwinding, for example
from a signal handler or call to pthread_exit(). Additional detail
can be found in other publications [1, 12].

Because of their dense, range-based encoding, it is difficult to do
small edits to these tables. For example, relocating a call instruction
to a new area requires that an FDE be split to accommodate the
new memory area, and the call site address in the call site table be
updated. But since the FDE, CS, action, and type table fields are
variable-length encoded and relative to the FDE’s starting address,
it is likely that the new call site table entry will have fields that
are longer or shorter than the previous entry. Changing a field size
requires shifting subsequent fields, which in turn forces updating
more offsets. A cascade of edits can occur, causing the entire table
to change.

Because a rewriter’s goal is to easily make adjustments to a
program, compose transformations, and create an output file that
is still efficient, we eschew an IR that directly deals with all these
complexities. Instead, we flatten the data structures and remove all
the fields used for space efficiency. Instead of using variable length
encodings, we used 32-bit fixed length encodings for most fields.
In particular, for each machine instruction in the program we are
rewriting, we record:

• The exact DWARF program for unwinding the stack (combin-
ing the CIE and FDE portions), stored as an array of DWARF
instructions. Since the CIE and FDE DWARF program is used
for all the machine instructions in the FDE’s range, some
DWARF instructions are unnecessary for unwinding at some
machine instruction. We trim DWARF programs accordingly.
• The instruction in the IR that represents the start of the
personality routine.
• If the instruction is in the call site table, we record the landing
pad, and relevant action and type table information necessary
to invoke the personality routine properly.

Because we were unable to find an existing, suitable library to
parse the ELF eh_frame sections, we built our own parser for it
that builds an abstract syntax tree style (AST) representation. We
use the AST to populate the initial IR with the aforementioned
information. Since many machine instructions typically share the
same trimmed DWARF program, the IR provides copy-on-write
and automatic de-duplication facilities to shield a transform writer
from the complexities of managing these fields.

2.3 EH Frame IR Manipulation
If a transformation is to be enacted by the binary rewriter, the
unwind and exception information must be updated. For example,
if the stack size is extended for security purposes (say, to store a
canary value), the unwind informationmust be updated accordingly,
otherwise the stack unwinder is going to give erroneous results if
an exception is thrown, likely resulting in a program crash.

Because we elide the complexities of directly encoding the ELF
tables in our IR, it is quite easy for a transform writer to update the
EH information. For example, if the transform writer wants to put
additional checks when catching an exception, it is easy for them
to find and adjust the landing pad to include new code. If they want
to add a catch all clause to a particular call site, they can simply add
the appropriate entry directly to the call’s action and type table.
Similarly, inserting new instructions can easily support exception
handling and unwinding by copying the EH information from an
adjacent instruction. If the newly inserted instructions modify the
stack (e.g., saves and restores a register), the DWARF program for
unwinding can be easily extended to restore the register.

Perhaps the most complicated case is when a transform decides
to change a function’s frame layout. In this case, the EH information
for every instruction in the program is likely to change. A transform
writer would have to iterate through all the function’s instructions,
and then update the DWARF program for each to reflect how the
stack has changed. Section 3.2 discusses a sample transform that
performs exactly these edits. The EH frame editing took about 250
additional lines of code to implement, much of it very simple code
to iterate the function’s instructions and edit the corresponding
DWARF programs.
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2.4 EH Frame IR Instantiation
After the constructed IR has been manipulated to provide the user-
selected enhancements, a new ELF file must be constructed before
we can execute the program. As such, the IR must be mapped back
into the ELF eh_frame format. Since the information contained in
the tables is based on ranges of return addresses, we first layout
the code so that all instructions are assigned to final addresses in
the program.

Next, we construct an eh_frame. To achieve this goal, we first
create an abstract representation of each structure in memory.

We could create a new abstract FDE, CIE and LSDA for each
instruction in the output program, but the size overhead would be
undesirable. Instead, we start with an empty CIE and FDE and create
an LSDA for each FDE. Then we iterate through each instruction in
the program starting at low addresses and working towards high
addresses. At each instruction, we determine if the most recent CIE
and FDE can be extended to cover the instruction. To qualify as
being extendable, the CIE’s DWARF program must match, and the
FDE’s DWARF programmust be a prefix of the under-consideration
instruction’s program, and the personality routine must match.
If the structures can be extended, they are. New call site table
entries, action table entries, and type table entries are added to the
FDE’s LSDA as appropriate. If the FDE or CIE structures cannot be
extended, a new abstract FDE or CIE is created and added to the
list.

Once the abstract representation is constructed, we concretize it
by emitting the abstract representation to a file as assembly code and
use the system assembler to create the encoded, compressed binary
representation. We use assembler labels for linking the structures
within the section, and absolute values for any code addresses (that
were previously assigned during code layout). The binary form is
extracted from the assembler’s output file, and added directly to
final ELF file.

This method has the benefit of re-using the same mechanism
the compiler uses for creating the unwind and EH tables, while
allowing the code layout algorithm to be selected by the rewriter.
The downside is that the code layout can dramatically affect the
size of the rewritten EH tables. In Section 3.1, we discuss the impact
of code layout on EH table size.

3 EXPERIMENTAL RESULTS
3.1 Performance and Filesize Evaluation
To measure the effectiveness of our EH-table rewriting, we per-
formed a number of experiments using the SPEC CPU2006 Bench-
mark suite [11]. The experiments were performed on an Intel
2.4GHz E4645 processor (12 cores) with 48Gb of main memory
running Ubuntu 14.04.2 LTS. The binaries were produced using
gcc, g++, gfortran version 4.8.4 with -O2 optimization level (with
the exception of perl and wrf, which require lower optimization
levels for the program to operate correctly before we apply any
rewriting). The benchmark DealII was not included because it does
not build correctly at any optimization level.

We measured the performance (runtime and disk file size) of four
configurations: 1) blocks of code are placed randomly, 2) blocks are
placed to improve locality, 3) random placement with EH frame
rewriting, and 4) optimized placement with EH frame rewriting.

In Figures 3, 4, and 5 performance results are normalized to the
performance of the original binary (i.e., less than 1.0 indicates
speedup/space decrease and greater than 1.0 indicates slowdown/size
increase).

Figure 3 shows the runtime overhead of the four configurations.
The difference between bars 1 and 3 shows that EH-table rewrit-
ing significantly improves performance (improves geometric mean
from 1.15 to 1.07). The improvement from EH-table rewriting comes
from two sources. First, because return addresses are not pinned
(Section 2.1), the rewriter can leverage the hardware’s call instruc-
tion to write the return address instead of having to emit a sequence
of instructions to write the return address into the proper place.
Using the hardware’s call instruction further improves performance
because the hardware’s branch predictor expects calls and returns
to be matched.

Second, because the new EH tables reflect the actual location
of return address targets in the rewritten code, these addresses no
longer need to be pinned giving greater flexibility to placement of
blocks of rewritten code. In the figure, we include bars 1, 2 and 3
to highlight the additional benefits of giving the code placement
algorithm more flexibility. Bars 1 and 2 show the benefit of using a
locality based code placement algorithm—an improvement of the
geometric mean from 1.15 to 1.11. The difference of the last two
bars show the benefit of locality when EH-table rewriting unpins
return addresses — the performance average drops from 1.07 to
1.03, just 3% above the original executable.

As noted in Section 2.4, the rewriting of the binary affects EH-
table size and thus the size of the binary. Figure 4 presents com-
parisons of the file size of the binaries. The first two bars show
the base effect of Zipr on file size. This overhead comes from two
sources: fragmentation due to pinning and the longer calling se-
quence when setting the return address to a pinned value. The last
two bars shows the effect of EH-table rewriting on size. Because
Zipr’s code layout algorithms are agnostic to EH table size con-
siderations, a much larger number of FDEs are created over the
baseline. Our measurements (not shown) indicated that with no
locality optimization there were on average 4.7 times more FDEs
than in the baseline configuration. The random placement results in
more FDEs because an FDE is inherently range based. By splitting
up code blocks covered by one FDE in the original, more FDEs are
required.

With locality optimization, the average number of FDEs dropped
to 3.2 times more FDEs than in the baseline configuration. This
drop is because the locality layout attempts to keep blocks from the
same function together. This inadvertently lowers the FDE count.

While file size is a secondary consideration for some application
areas, it can be important and optimizing FDE creation is an area
of future work. In the future, an FDE-aware layout algorithm can
likely make significant gains in reducing file size.

3.2 Case Study: Stack Layout Transformation
In the previous section we reported measurements of the perfor-
mance of simply rewriting a binary—in essence a null transform. In
the null transform it is not mandatory to modify the EH tables (i.e.,
bars 1 and 2 in Figures 3 and 4). However, when new functionality
(e.g., a security enhancement) is added to an application, it is nec-
essary to update the EH tables. As a preliminary investigation of
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Figure 3: Performance Overhead of SPEC CPU2006 Benchmarks (normalized to native execution).
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Figure 4: Filesize Overhead of SPEC CPU2006 Benchmarks.

composing security techniques with exception handling, we applied
a diversity transform to the six working C++ benchmarks in SPEC
CPU2006. We choose the C++ benchmarks because they are often
omitted from rewriter evaluations because they are particularly
tricky to rewrite due to the exception handling and large code size.

For these benchmarks, we applied a stack-layout diversity trans-
form (SLX), that randomly pads the activation records of functions
and inserts canaries [8]. This transform has proved effective at
preventing certain types of stack buffer overflow attacks.

Figure 5 shows the performance overhead of two configurations
when SLX is applied. For bar 1, EH-table rewriting is not applied,
and for bar 2 EH-table rewriting is enabled.

The first thing to notice is that bar 1 is missing for 453.povray
and 471.omnetpp. The missing bars are because these applications
dynamically throw exceptions, which causes the benchmark to
fail unless the EH tables are updated. These results highlight the
need for a robust binary rewriter to handle applications that throw
exceptions. The geometric mean for the working benchmarks in
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Figure 5: Normalized Performance Overhead of SLX Trans-
form on SPEC CPU2006 C++ Benchmarks.

this configuration is 1.26 (displayed as the the ‘ghost’ bar). For SLX
with EH-table rewriting (bar 2), the geometric mean is 1.1.

3.3 Case Study: Webservers, Ada and Libraries
To demonstrate that our EH-table rewriting is robust under a wider
range of EH handling situations, we decided to try an Ada program.
Ada is different from C++ because Ada uses exception handling
as part of normal operation. For example, the end-of-file (EOF)
conditions are typically checked by trying to read a byte, and an
exception is thrown/caught to indicate EOF.

We looked for a large, open-source project written in Ada, and
found the Ada Web Server (AWS) [2]. AWS is an Ada library that
provides web services for other programs. As part of the distribu-
tion, it comes with samples for how to use it, and we chose the WPS
(web page server) example as it provides basic web page services
that are easy to test. We noted that a single web page request often
saw tens or even hundreds of exceptions thrown, far more than all
of SPEC executes during an entire run of the test suite. Thus, we
believe AWS to be a suitable test of the functional correctness of
our EH-table rewriting.

We compiled WPS with the GNU gnat compiler using optimiza-
tion level -O2. We then performed a rewrite with and without
EH-table rewriting on the main executable (WPS statically links the
AWS code into the main executable), as well as two Ada runtime
libraries: libgnat.so and libgnarl.so. The libraries are written
mostly in Ada with some C, C++, and assembly. They support
common Ada operations like file manipulation, I/O, etc., much
like libc.so or libstdc++ for C and C++. The three files total 11
megabytes of disk space and make for a substantial test.

After rewriting, we used Apache Jmeter to run a battery of web
requests. We observed no failures and conclude that the rewriting
is robust for Ada as well as for system libraries.

For the three rewritten executables, we observed file size over-
heads of 94.8%, 44.3%, and 56.7% after EH-table rewriting (with
the optimized code layout). Unfortunately, we were unable to ade-
quately measure performance overheads, as our test setup made the
machine I/O bound, and presenting performance numbers would
be misleading.

4 RELATEDWORK
There are many static binary rewriters (e.g., [20], [10]). Some are
designed to transform the input binary to accomplish a particular
task (e.g., [19], [18]). Some work only at linking phase ([13]) or re-
quire the programs’ debugging symbols and relocation information
(e.g., [7]). Some do not provide the transformation writer with a
high-level API for developing transformations ([9]).

Recent notable static binary rewriting platforms that do not
require debugging information or other metadata include Second-
Write [3], UROBOROS [17], and Ramblr [15].

SecondWrite recreates an IR from the input binary, applies user-
specified transformations to that IR and, finally, passes the trans-
formed IR to the LLVM compiler to generate the rewritten pro-
gram. SecondWrite splits the original program stack into individual
frames, splits those frames into individual variables and, finally,
converts constants and variable memory accesses into symbols.
Based on that analysis, SecondWrite constructs an IR from the orig-
inal program that can be analyzed by LLVM. SecondWrite applies
LLVM’s built-in optimizations to this IR and uses LLVM’s code
generation algorithms to reconstruct the modified program.

UROBOROS and Ramblr recreate reassembleable disassembly [16]
from the input binary, apply user-specified transformations to that
representation and, finally, pass the modified version of that repre-
sentation to an assembler to generate the rewritten binary. Reassem-
bleable disassembly is different than the disassembly output from a
tool like objdump or IDA Pro which contains constant immediates
to address other code or data using their locations in the input
binary. Because absolute addresses are used as pointers, the instruc-
tions and data at those addresses cannot be moved and, therefore,
the output from a traditional disassembler cannot be given to an
unmodified assembler to recreate the program. In reassembleable
disassembly, those code/data immediate values have been replaced
with symbols which gives an unmodified assembler the ability to
conveniently and arbitrarily place data and code and update the
symbolic addresses with the absolute addresses as the last step
before completing the rewriting process.

To the best of our knowledge, SecondWrite, UROBOROS, and
Ramblr have left exception handling support for future work.

5 SUMMARY
Static binary rewriting is emerging as an important tool for late
stage-modification of binaries. To be widely adopted, binary rewrit-
ers must be robust and widely applicable. This paper has described
and evaluated an approach for rewriting applications that make use
of stack unwinding for exception handling. Beyond expanding the
use of static binary rewriting to an important class of applications,
the technique also improves performance. Measurements using
the full SPEC CPU2016 benchmark suite showed that when the
technique was incorporated into a modern, fully-featured binary
writer, runtime overhead was reduced from 15% to 3%.
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