
UT DALLAS Erik%Jonsson%School%of%Engineering%&%Computer%Science

FEARLESS engineering

BinForce

Statically Rewriting x86 COTS
Binaries w/o Heuristics

Erick Bauman and Zhiqiang Lin

University of Texas at Dallas

FEARLESS engineering 1 / 14



Static Binary Rewriting is Important

Applications

1 Software fault isolation (SFI) [WLAG93]

2 Control Flow Integrity (CFI) [ABEL09]

3 Binary code hardening (e.g., Stir [WMHL12])

4 Binary code reuse (e.g., Bcr [CJMS10])

5 Platform-specific optimizations [ASE+13]

FEARLESS engineering 2 / 14



Challenges in Disassembling

1 Recognizing and relocating static memory addresses

2 Handling dynamically computed memory addresses

3 Differentiating code from data

4 Handling function pointer arguments (e.g., callbacks)

5 Handing PIC (Position Independent Code)

FEARLESS engineering 3 / 14



Existing Static Rewriters: w/ Heuristics

1 Assume certain compiler generated binaries

2 Assume having debug symbols

3 Assume knowledge of APIs (call backs)

4 Assume no code and data interleaving

5 Rely on relocation metadata

6 Use heuristics to recognize static memory addresses

7 ...

FEARLESS engineering 4 / 14



Brute Force Disassembler

“When in doubt, use brute force.” –

Ken Thompson

FEARLESS engineering 5 / 14



Brute Force Disassembler

Offset 0
Offset 1

Offset 2
Offset 3

Offset 4
Offset 5

Offset 6
...

FEARLESS engineering 5 / 14



Brute Force Disassembler

Offset 0
Offset 1

Offset 2
Offset 3

Offset 4
Offset 5

Offset 6
...

1 Statically Disassembly of
Obfuscated Binaries [KRVV04]

2 Shingled Graph
Disassembly [WZHK14]

3 GPU-Disasm: GPU-based x86
Disassembly [LVP+15]

FEARLESS engineering 5 / 14



Instruction Address Mapping

.text

.data

.globalmapping

.newtext

.localmapping

local_lookup

global_lookup

.text (libc)

.data (libc)

.newtext (libc)

.localmapping 
(libc)

local_lookup

2
1

3
4

5

6

FEARLESS engineering 6 / 14



Overview of BinForce

Instruction 
Rewriter

Brute-Force 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

FEARLESS engineering 7 / 14



Statistics of our rewritten binaries and libraries

Benchmark Dir. Calls Dir. Jumps Ind. Calls Ind. Jumps Cond. Jumps Rets .text (KB) .newtext (KB) Size Inc. (X)
400.perlbench 30888 24778 3896 4442 126876 22306 1047 5146 12.88
401.bzip2 1100 1050 170 152 7342 874 55 268 70.71
403.gcc 110122 64532 8916 15680 380920 45410 3225 15290 10.32
429.mcf 276 216 44 78 1300 250 12 57 202.98
445.gobmk 23548 14946 3550 3480 117378 20918 1488 6520 5.39
456.hmmer 8020 4942 556 666 28924 4106 277 1279 22.56
458.sjeng 2566 2338 256 658 12236 1570 132 604 36.17
462.libquantum 1094 758 94 146 3376 812 40 181 93.73
464.h264ref 7124 6518 1782 2000 47850 6318 520 2441 16.23
471.omnetpp 33578 10032 3830 1782 51642 14326 635 3029 13.49
473.astar 912 552 162 160 3314 750 39 184 92.52
483.xalancbmk 115154 58678 39392 14630 307122 75674 3850 17369 7.60
libc.so.6 32798 33370 9816 9012 189384 32458 1735 8435 9.77
libgcc s.so.1 2158 2514 374 484 12862 1740 112 538 9.70
libm.so.6 5450 8870 874 892 21796 7406 277 1268 9.51
libstdc++.so.6 22456 10418 4300 4008 144516 15784 900 4258 9.53

TABLE I: Statistics of our rewritten binaries and libraries.

need to call the global lookup function, but since we place it
at a fixed address, it does not need to appear in the shared
libraries; all the dynamic libraries will call the same global
lookup function address because they know it will be mapped
there at runtime. This is not restrictive, as we can simply
rewrite all the libraries again if we need to change the global
mapping to a different address.

VI. EVALUATION

In this section, we report our evaluation results. We first
report how we perform the effectiveness evaluation in §VI-A,
and then report the BINFORCE resulted performance overhead
in §VI-B. For our benchmarks, we used all 12 SPECint
2006 benchmark programs. We also had to rewrite the shared
libraries used by the benchmarks. We did not test with the
SPECfp benchmarks because we did not focus on rewriting
Fortran programs, of which there are several in SPECfp.
However, in theory, our rewriter should work on Fortran
programs as well. Our test machine runs Ubuntu 14.04.1 LTS,
and has an Intel i7-2600 CPU running at 3.40GHz, with 4GiB
of RAM.

A. Effectiveness

We first demonstrate the effectiveness of BINFORCE’s
implementation by comparing the output of the original and
rewritten binaries. By showing that all rewritten binaries pro-
duce identical output to the original, we can be confident of
the correctness of the implementation of our design. To this
end, we executed both the rewritten version and the original
version of the corresponding benchmark, and compared their
output. Without any surprise, all the rewritten binaries ran
correctly—producing the same output as the original program.
We have to note that we did not attempt to exhaustively run
all the branches of the two versions and simply used the same
configuration to run them.

The summary of the rewriting statistics is shown in Table I.
We show the binaries and libraries we had to rewrite for the
SPEC benchmarks. One interesting detail is how similar the
increase in size for each of the text sections for all the binaries
is; they all increase in size between 4-5 times. In most x86

binaries, instructions are on average a little over 3 bytes [7], so
we speculate that may explain for this consistent size increase.
For every instruction on average, it may only take an offset of
3-4 bytes to encounter an offset that was already assembled
in a previous starting offset (i.e., every 4-5 bytes). We will
investigate the implications of this in future work.

Note that the .newtext sections shown in the table do not
include the local mapping, which is always 4 times larger than
the original due to the fact that we must store 4-byte entries for
every byte offset in the text section. In addition, every binary
also contains the slightly more than 4MB global mapping. It
would be possible for us to allocate the global mapping to
.bss in future work and eliminate this static file overhead,
but for now we fill the space with 0xffffffff bytes. The
effect of this can be seen in the last column of Table I. The
size overhead for 429.mcf looks remarkably high because
the original binary is very small, and the fixed overhead of
the global mapping dominates the rest of the code. Therefore,
for large applications, this increase will be less noticeable and
the percent increase in size will be much less. This means that
as the size of the initial binary increases, size overhead will
approach the increase in size of the new text section plus the
local mapping, which averages to only around 9 times (4-5
times for .newtext, plus 4 times for the local mapping).
Also notice that this pattern is demonstrated in the shared
libraries we rewrote; since we do not need to include a global
mapping in an .so, the overhead is lower and more consistent.

Real-World Binaries. We also tested BINFORCE with other
real-world software to demonstrate its effectiveness. First, we
rewrote all the binaries in the GNU Core Utilities, which
contain the implementations of utilities found on all Unix-like
systems. This provided a diverse set of utility applications.
We also tested BINFORCE by rewriting a number of other
applications, including an image editor (Gimp), graphical
browser (Dillo), word processor (Abiword), web server (Ng-
inx), pdf viewer (Okular), spreadsheet editor (Gnumeric), and
graphical game (Biniax), among others. In total we rewrote
126 binaries and 77 libraries (the applications shared many
common libraries) comprising a total of 54MB. All worked as
expected.

9

FEARLESS engineering 8 / 14



Runtime overhead for each of the benchmarks

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

288.3% 129.9%128.2%

Binary + Libraries
Binary Only

Binary Only w/o Generic PIC

Fig. 5: Percent runtime overhead for each of the reported benchmarks.

B. Performance

We also measured the runtime overhead of our rewritten
binaries. We ran the SPECint benchmarks 10 times each, both
on the original binaries and our rewritten binaries. We took
the averages from the benchmark results.

Rewriting Performance. We first rewrote both the
benchmarks and all their required shared libraries. As
shown in the first bar in Figure 5, a few benchmarks
had very high overhead, especially 471.omnetpp and
483.xalancbmk. This is because of our very generic
handling of control flow during the rewriting. Since we
make very few assumptions (discussed in §II-A) about the
instructions in a binary, this sometimes results in surprisingly
high overhead. 471.omnetpp and 483.xalancbmk are
both C++ applications, and therefore we suspect the high
overhead results from the use of C++ features that become
very expensive after being rewritten. In addition, frequent calls
to library functions require a more expensive call to the global
lookup, so this may be a factor. However, note that besides the
C++ programs, the other benchmarks all have less than 100%
overhead, and most are below 50%. The average runtime over-
head when rewriting the main binary and libraries was 60.42%.

However, some further optimizations can be performed. In
particular, since the contents of libraries are often known, it is
acceptable in some use cases to rewrite only the main binary.
Therefore, we decided to implement the other approach we
discussed for solving C4: only rewriting the main binary (and
leaving the libraries unmodified), and treating callbacks as a
special case. However, this requires we use a list of library
functions that take callbacks, as all callback parameters
must be rewritten to point to their corresponding addresses
in .newtext. Since it is difficult to compute this list
automatically, we populated it manually. With this approach,
we were able to reduce overhead, in some cases significantly
(e.g., 456.hmmer and 471.omnetpp). The results are
shown in the second bar in Figure 5, and average overhead
was 34.17%. This also allows the global lookup to be omitted,
shrinking the size of the rewritten binary in addition to

improving overhead. Rewriting the main binary makes sense
in many use cases; sometimes the libraries do not need to be
instrumented, or can be trusted more than the main binary.

In most normal binaries, PIC uses the get_pc_thunk
function to get the code address. We found that if we added
the extra assumption that code would never attempt to get
its own address without using get_pc_thunk (a reasonable
assumption for well-behaved x86-32 binaries), we dealt with
C5 far more efficiently. This is a significant optimization
because we no longer have to rewrite all call and return
instructions to push and translate old addresses, and the effect
of this change is clearly shown in the third bar in Figure 5.
Average overhead with this optimization was 8.29%. This
demonstrates how a few well-chosen assumptions can result in
vastly improved performance. Therefore, in the future we can
add settings for other common patterns in binaries to improve
practical performance when certain properties of a binary are
known, while keeping the core rewriter generic enough to
handle almost any binary.

It is important to emphasize that writing only the main bi-
nary and removing generic PIC do make assumptions. Specifi-
cally, rewriting only the main binary assumes knowledge of all
callback arguments for functions, and removing generic PIC
assumes that the only PIC in the binary is the thunk. Thus,
these two optimizations will not work for certain binaries.
However, we demonstrated these optimizations to show the
performance improvements they would provide; we wanted to
show the potential for adding assumptions in cases in which
it is safe to do so. Our core rewriter does not make these
assumptions.

Instrumentation Performance. Making no changes when
rewriting a binary is of limited utility. A much more interesting
application that BINFORCE enables is binary instrumentation,
since we can insert arbitrary code around any existing instruc-
tion. We implemented a straightforward instrumentation API
to add assembly before any instruction.

10

FEARLESS engineering 9 / 14



Overhead for the benchmarks w/ shadow stack protection

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

0%

50%

100%

150%

200%

250%

300%
BINFORCE

BINFORCE w/ Shadow Stack

Fig. 7: Percent runtime overhead for the benchmarks instru-
mented with a shadow stack.

overhead of BINFORCE without heuristics, it can be practi-
cal in certain instrumentation contexts and can be used for
instrumenting binaries that do not obey common assumptions
without introducing unacceptable overhead when compared to
existing production tools.

VII. SECURITY APPLICATIONS

There is potential for many interesting security applications
with BINFORCE. Binary rewriting is a foundational technique
for increasing security in programs without source available,
and BINFORCE makes this more practical for arbitrary binaries
by making rewriting without heuristics possible. Because of
this, and to show the potential of the framework, we used
BINFORCE to implement a shadow stack.

Shadow Stack Performance. Shadow stacks are used to
protect return addresses on the stack by allocating a separate
memory region for the shadow stack, and inserting code that
saves return addresses to the shadow stack whenever a function
is called. Then, when a function returns, the inserted code
either checks whether the return address in the stack and
shadow stack match, or simply overwrites the address in the
stack with the one stored in the shadow stack. This ensures
that an attacker cannot overwrite return addresses in the stack
for ROP attacks. Therefore, shadow stacks can be considered a
form of backward-edge CFI [18]. We used the parallel shadow
stack concept introduced by [12], and we implemented the
overwriting, no-zeroing version described in the paper.

Implementing a shadow stack with our framework was
quite straightforward, requiring only the insertion of instruc-
tions for every call and ret instruction and allocating
shadow stack memory. Since we rewrite call instructions
in BINFORCE to a push/jmp pair that pushes the original

return address, we must insert our code after the push but
before the jmp. We insert the following two instructions for
each call, which writes the return address on the top of the
stack into the parallel shadow stack:

pop [esp + (shadow_stack_offset - 4)]
sub esp, 4

BINFORCE rewrites ret instructions into pop/jmp instruc-
tions, in which the return address at the top of the stack
is popped and passed to the lookup function to determine
the rewritten jump target. Therefore, we simply insert two
instructions directly before the rewritten ret code to overwrite
the return address on the stack with the corresponding shadow
stack contents (hence an overwriting shadow stack):

add esp, 4
push [esp + (shadow_stack_offset - 4)]

We rewrote the SPECint benchmarks and their libraries
without either of our optimizations, because the shadow stack
does not work when only rewriting the main binary. Some
functions in libc call code in the main binary, and since
libc is not rewritten when we use our optimizations, it does
not push the return address on the shadow stack. Therefore,
when the main binary returns to libc, there is no entry in the
shadow stack and the program crashes. This is not a limitation
of our framework, but rather an implementation challenge
for shadow stacks if one does not intend to instrument all
calls. Therefore, for our shadow stack proof-of-concept, we
focus only on our general approach of rewriting everything.
We ran the SPECint benchmarks 10 times and computed the
overhead relative to the results of the unmodified benchmarks.
The results are shown as the second column in Figure 7.

The results of the benchmarks are similar to our frame-
work with no instrumentation, with an average increase of
11.64% when compared to the overhead in the first column
(the overhead of BINFORCE with no instrumentation, which
is the same as the first column in Figure 5). The bench-
mark with the highest increase over no instrumentation was
483.xalancbmk, with an increase of 44.49%, which was
also the benchmark with the highest overhead for all shadow
stack implementations in [12]. Several other benchmarks had
a very low increase in overhead, such as 429.mcf (0.19%)
and 473.astar (2.44%), and one benchmark, 456.hmmer,
was in fact faster (-4.02%). Speed improvements occurred for
several benchmarks in the implementation in [12] as well, so
this is not too surprising.

The overhead difference over our baseline rewriter for
SPECint is more significant than the overhead shown in [12];
however, the data presented there is for SPECint benchmarks
compiled with -O3, which the paper claims is marginally
faster than the default -O2 optimization level we used. In
addition, the instrumentation used by [12] assumed knowl-
edge of the correct assembly and inserted the instrumentation
before the object files were assembled, yielding the lowest
instrumentation cost possible. Finally, their implementation
instrumented function prologues instead of call instructions;
we instrument call instructions because we do not have reliable
information about function entry points, which may result in
more instrumentation (and less code locality). These differ-
ences likely contribute to the higher increase in overhead for

12

FEARLESS engineering 10 / 14



Conclusion

Instruction 
Rewriter

Brute-Force 
Disassembler

.localmapping

Original Executable, 

Shared Library

New Executable, 

Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

ELF

.rodata

.got

.got.plt

.data

.text

.newtext

Mapping Phase

Rewriting Phase

I BinForce: Statically
rewriting x86 binaries w/o
heuristics

I Reasonable performance

I Does not support dynamically
generated code

I Opportunities for
optimization (e.g., size of the
code, performance)

FEARLESS engineering 11 / 14



Thank You

Questions / Comments

I Erick Bauman - erick.bauman@utdallas.edu

I Zhiqiang Lin - zhiqiang.lin@utdallas.edu

Source code will be available in github.com

FEARLESS engineering 12 / 14

erick.bauman@utdallas.edu
zhiqiang.lin@utdallas.edu
github.com


References I

Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti, Control-flow integrity principles,

implementations, and applications, ACM Trans. Information and System Security 13 (2009), no. 1.

Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen, Nathan Giles, and Rajeev

Barua, A compiler-level intermediate representation based binary analysis and rewriting system, Proceedings
of the 8th ACM European Conference on Computer Systems, ACM, 2013, pp. 295–308.

Juan Caballero, Noah M. Johnson, Stephen McCamant, and Dawn Song, Binary code extraction and

interface identification for security applications, NDSS, Feb. 2010.

Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna, Static disassembly of

obfuscated binaries, USENIX security Symposium, vol. 13, 2004, pp. 18–18.

Evangelos Ladakis, Giorgos Vasiliadis, Michalis Polychronakis, Sotiris Ioannidis, and Georgios Portokalidis,

Gpu-disasm: A gpu-based x86 disassembler, International Information Security Conference, Springer, 2015,
pp. 472–489.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham, Efficient software-based fault

isolation, Proc. ACM Sym. Operating Systems Principles, 1993, pp. 203–216.

Richard Wartell, Vishwath Mohan, Kevin Hamlen, and Zhiqiang Lin, Binary stirring: Self-randomizing

instruction addresses of legacy x86 binary code, Proceedings of the 19th ACM Conference on Computer and
Communications Security (CCS’12) (Raleigh, NC), October 2012.

FEARLESS engineering 13 / 14



References II

Richard Wartell, Yan Zhou, Kevin W Hamlen, and Murat Kantarcioglu, Shingled graph disassembly:

Finding the undecideable path, Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer,
2014, pp. 273–285.

FEARLESS engineering 14 / 14


	Evaluation
	References

